AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation Deemed to be University)

AICTE APPROVED & NAAC Accredited

Faculty of Engineering and Technology

Department of Mechanical Engineering

Programme: B.E – Mechanical Engineering

Structured Choice Based Credit System (SCBCS)

Curriculum & Syllabus (Semester I to VIII)

Regulations 2021

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

Department of Mechanical Engineering

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

 04	Design, analyze & fabricate, maintain and improve mechanical
PEO.1	engineering systems that are technically sound, economically feasible and
	socially acceptable to enhance quality of life.
	Apply modern computational, analytical, simulation tools and techniques
PEO.2	to address the challenges faced in mechanical and allied engineering
	streams.
DEO 2	Communicate effectively using innovative tools and demonstrate
PEO.3	leadership & entrepreneurial skills.
DEO 4	Exhibit professionalism, ethical attitude, team spirit and pursue lifelong
PEO.4	learning to achieve career and organizational goals.

PROGRAM SPECIFIC OUTCOMES (PSOs)

To achieve the mission of the program, Mechanical Engineering graduates will be able:

D GO 4	To work independently as well as in team to formulate, design, execute					
PSO.1	solutions for engineering problems and also analyze, synthesize technical					
	data for application to product, process, system design & development					
	To understand & contribute towards social, environmental issues,					
PSO.2	following professional ethics and codes of conduct and embrace lifelong					
	learning for continuous improvement					
DCO 2	To develop expertise towards use of modern engineering tools, careers in					
PSO.3	industries and research and demonstrate entrepreneurial skill					

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Credit Requirement for Course Categories

S.No	Category of Courses	Credits to be earned
1	A. Foundation Courses (FC)	45-61
	i. Humanities and Sciences (English and Management	9-12
	Courses)	
	ii. Basic Sciences (Maths, Physics and Chemistry Courses)	18-25
	iii. Engineering Sciences (Basic Engineering Courses)	18-24
2	B. Core courses (CC)	48-54
	C. Elective Courses (EC)	36
	i. Professional Electives	12
	ii. Industry Designed/ Industry Supported/ Industry Offered/	6
	Industry Sponsored courses	
	iii. Open Electives	
	a. Innovation, Entrepreneurship, Skill Development etc.	6-9
	b. Emerging Areas like 3D Printing, Artificial	6-9
	Intelligence, Internet of Things etc.	
4	D. Employability Enhancement Courses	15
	i. Project work	8
	ii. Mini Project	3
	iii. Seminar	1
	iv. Internship in industry or elsewhere	3
5	Mandatory Courses – 1 Yoga and Mediation	0
<u> </u>	Audit Courses - 2 courses to be selected	0
	Minimum Credits to be earned	160
**	The credits earned in category 'E' Courses will not be counted calculation for awarding of the degree.	ed in CGPA

A. Foundation Courses (FC) – (45-61)

i. Humanities and Sciences (English and Management Courses)- (9-12)

S.No	Course Code	Course Name	Offering Dept	Catego ry	L	T	P	C	Prerequisite
1		Technical English	English		3	0	0	3	
2		English Language Lab	English		0	0	4	2	
3		Business English	English		3	0	0	3	
4		Total Quality Management	Mgt		3	0	0	3	
5		Engineering Management and Ethics	Mgt		3	0	0	3	
6		Universal Human Values – Understanding Harmony	English		3	0	0	3	

ii. Basic Sciences (Maths, Physics and Chemistry Courses) –(18-25)

S.N o	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	С	Prerequisite
1		Engineering Mathematics	Maths		2	1	0	3	
2		Physical Sciences	Physics & Chemistry		4	0	0	4	
3		Smart Materials	Physics		3	0	0	3	
4		Physical Sciences Lab	Physics & Chemistry		0	0	4	2	
5		Industrial Materials	Chemistry		3	0	0	3	
6		Mathematics For Mechanical Sciences	Maths		2	1	0	3	Engineering Mathematics
7		Numerical Methods For Mechanical Sciences	Maths		2	1	0	3	Engineering Mathematics & Mathematics For Mechanical Sciences
8		Resource Management Technique	Maths		2	1	0	3	
9		Probability And Statistics	Maths		2	1	0	3	
	ii	i. Engineering Sciences (Basic	Engineeri	ng Cour	ses)	- (1	8-24) (23)	
1		Foundations of Computing and Programming (Theory and Practice)	CSE		2	0	2	3	
2		Basics of Civil and Mechanical Engineering	Civil & Mech		4	0	0	4	
3		Python Programming (Theory and Practice)	CSE		2	0	2	3	
4		Basics of Electrical and Electronics Engineering	EEE & ECE		4	0	0	4	
5		Workshop Practices	Mech		0	0	4	2	
6		Programming for Problem Solving	CSE		3	0	0	3	
7		Basics of Electrical and Electronics Engineering Lab A-Basic Electrical Engineering B-Basic Electronics Engineering	EEE & ECE		0	0	4	2	
8		Engineering Graphics and Design	Mech		1	0	4	3	
9		Engineering Mechanics	Mech		2	1	0	3	

Mech -

Offered

3

Manufacturing Engineering For

Pharmaceutical Engineers

10

		to PCE					
11	Manufacturing Engineering Lab For Pharmaceutical Engineers	Mech – Offered to PCE	0	0	4	2	
12	Engineering Skill Practices A-Basics of Civil Engineering B-Basics of Mechanical Engineering	Civil & Mech -	0	0	4	2	
13	Engineering Mechanics For Biomedical Engineers	Mech – Offered to BME	3	1	0	4	

	B. Core courses (CC) – (48-54) (54)												
S.N o	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	С	Prerequisite				
1		Manufacturing Processes - NPTEL	Mech		3	0	2	4					
2		Fluid Mechanics and Machinery	Mech		2	1	2	4					
3		Mechanics of Machines - NPTEL	Mech		3	0	2	4	Engineering Mechanics				
4		Mechanical Behaviour of Materials And Metallurgy- NPTEL	Mech		3	0	2	4					
5		Strength of Materials- NPTEL	Mech		2	1	2	4	Engineering Mechanics				
6		Engineering Thermodynamics- NPTEL	Mech		2	1	2	4					
7		Thermal Engineering Sciences	Mech		2	1	2	4	Engineering Thermodynamics				
8		Design of Machine Elements	Mech		2	1	0	3					
9		Engineering Metrology and Measurements- NPTEL	Mech		3	0	2	4					
10		Automobile Engineering- NPTEL	Mech		3	0	2	4					
11		Computer Integrated Manufacturing- NPTEL	Mech		3	0	2	4	Manufacturing Processes				
12		Design of Transmission System	Mech		2	1	0	3					
13		Heat and Mass Transfer- NPTEL	Mech		2	1	2	4	Thermal Engineering Sciences				
14		Finite Element Analysis- NPTEL	Mech		3	0	2	4	Computer Integrated Manufacturing				

C. Elective Courses (EC)

i. Professional Electives - 9

1. 3D Printing and Design

S.No	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	C	Prerequisite
1		Cad for Additive Manufacturing	Mech		3	0	0	3	
2		Powder Metallurgy	Mech		3	0	0	3	
3		Additive Manufacturing in Medical Applications	Mech		3	0	0	3	
4		Rapid Tooling And Industrial Applications	Mech		3	0	0	3	
5		Polymer Engineering	Mech		3	0	0	3	
6		3D Printing and Design	Mech		3	0	0	3	
7		Advanced 3D Printing Lab	Mech		0	0	4	2	
8		Additive Manufacturing Machines and Systems	Mech		3	0	0	3	
9		Prototyping Methods	Mech		3	0	0	3	
10		Theory of 3D Printing	Mech		3	0	0	3	

		2. Automated Design a	nd Manufa	cturing E	ngine	eerin	g		
S.No	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	C	Prerequisite
1		Additive Manufacturing Processes and Applications	Mech		3	0	0	3	
2		Mechanical Design	Mech		3	0	0	3	
3		Integrated Product Design & Development	Mech		3	0	0	3	
4		Manufacturing Control & Automation	Mech		3	0	0	3	
5		Advanced Machining Processes	Mech		3	0	0	3	
6		Robotics Based Industrial Automation	Mech		3	0	0	3	
7		Automation in Manufacturing	Mech		3	0	0	3	
8		Advanced CIM Lab	Mech		0	0	4	2	
9		Product Design For Manufacturing and Assembly	Mech		3	0	0	3	
10		Reverse Engineering and Computer Aided Inspection	Mech		3	0	0	3	
11		Automation lab	Mech		0	0	4	2	

		3. Automo	obile Engin	eering					
S.No	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	С	Prerequisite
1		Automotive Chassis	Mech		3	0	0	3	
2		Vehicle Transport Management	Mech		3	0	0	3	
3		Engine And Vehicle Management System	Mech		3	0	0	3	
4		Vehicle Maintenance	Mech		3	0	0	3	
5		Automotive Electrical and Electronic Systems	Mech		3	0	0	3	
6		Special Types of Vehicles	Mech		3	0	0	3	
7		Automotive Sustainability and Environmental Management	Mech		3	0	0	3	
8		Two And Three Wheeler Technology	Mech		3	0	0	3	
9		Automotive Chassis Lab	Mech		0	0	4	2	
10		Vehicle Maintenance and Servicing Lab	Mech		0	0	4	2	
11		Two and Three Wheeler Lab	Mech		0	0	4	2	
12		Automotive Electrical and Electronics Lab	Mech		0	0	4	2	
13		E-mobility and Autonomous Vehicle			3	0	0	3	

	4. Energy Engineering											
S.No	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	C	Prerequisite			
1		Energy Conservation in Thermal Systems	Mech		3	0	0	3				
2		Hydrogen and Fuel Cell Technology	Mech		3	0	0	3				
3		Renewable Sources of Energy	Mech		3	0	0	3				
4		Waste Energy Conversion Technologies	Mech		3	0	0	3				
5		Bio Energy Technology	Mech		3	0	0	3				
6		Energy Storage System	Mech		3	0	0	3				
7		Energy Lab	Mech		0	0	4	2				
8		Alternate Fuel Testing Lab	Mech		0	0	4	2				

	5. Thermal Engineering												
S.No	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	С	Prerequisite				
1		Combustion Engineering	Mech		3	0	0	3					
2		Computational Fluid Dynamics	Mech		3	0	0	3					
3		Cryogenic Engineering	Mech		3	0	0	3					
4		Power Plant Engineering	Mech		3	0	0	3					
5		Refrigeration And Air- Conditioning	Mech		3	0	0	3					
6		Turbo Machinery	Mech		3	0	0	3					
7		Design of Thermal Power Equipments	Mech		3	0	0	3					
8		Heat Exchangers – Fundamentals and design analysis	Mech		3	0	0	3					

	6. Aeronautical Engineering												
S.No	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	С	Prerequisite				
1		Aerodynamics	Mech		3	0	0	3					
2		Aerospace Propulsion	Mech		3	0	0	3					
3		Aircraft structures	Mech		3	0	0	3					
4		Aircraft Performance Stability and Control	Mech		3	0	0	3					
5		Aircraft Materials and Processes	Mech		3	0	0	3					
6		Aircraft General Engineering and Maintenance Practices	Mech		3	0	0	3					
7		Aircraft Structures Lab	Mech		0	0	4	2					
8		Aero Engine Lab	Mech		0	0	4	2					
9		Aero Space Propulsion Lab	Mech		0	0	4	2					
10		Aerodynamics Lab	Mech		0	0	4	2					

	ii Industry Designed/ Industry Supported/ Industry Offered/ Industry Sponsored courses – 6												
S.No	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	С	Prerequisite				
1		Introduction to Aircraft Industry And Aircraft Systems (Infosys)	Mech		3	0	0	3					
2		Design Of Aircraft Structures (Infosys)	Mech		3	0	0	3					
3		Basic Component Modeling (Mathwork)	Mech		3	0	0	3					
4		Vehicle Dynamics (Mathwork)	Mech		3	0	0	3					
5		Matlab for Mechanical Engineers (Mathwork)	Mech		3	0	0	3					
6		New Product Development	Mech		3	0	0	3					
7		Quality control - Tools and Problem Solving Methodologies											

•••	$\mathbf{\alpha}$			4 •
111	() 1	nen	H.16	ectives
	\mathbf{v}			

a. Innovation, Entrepreneurship, Skill Development etc. (6-9)

S.No	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	С	Prerequisite
1		Engineering Startups and Entrepreneurial Management	Mgt		3	0	0	3	
2		Project Management for Engineering Business and Technology	Mgt		3	0	0	3	
3		Intellectual Property Rights & Alternate Disputes Resolutions	Mgt		3	0	0	3	
4		Innovation, Product Development And Commercialization	Mgt		3	0	0	3	
5		Social Entrepreneurship	Mgt		3	0	0	3	
6		New Venture Planning and Management	Mgt		3	0	0	3	

b. Emerging Areas like 3D Printing, Artificial Intelligence, Internet of Things etc. (6-9)

S.No	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	С	Prerequisite
1		Disaster Mitigation and Management	Civil		3	0	0	3	
2		Municipal Solid and Waste Management	Civil		3	0	0	3	
3		Introduction to Internet of Things	CSE		3	0	0	3	
4		Fundamentals of Artificial Intelligence	CSE		3	0	0	3	
5		Robotics And Automation	ECE		3	0	0	3	
6		Introduction to Industry 4.0 And Industrial Internet of Things	ECE		3	0	0	3	
7		Green Power Generation Systems	EEE		3	0	0	3	
8		Industrial Drives And Automation	EEE		3	0	0	3	
9		Bioterrorism and National Security	BTE		3	0	0	3	
10		Food And Nutrition Technology	BTE		3	0	0	3	
11		Biomolecules : Structure, Function In	PCE		3	0	0	3	

	Health And Disease						
12	Pharmacogenomics	PCE	3	0	0	3	

D. E	D. Employability Enhancement Courses											
S.No	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	С	Prerequisite			
1		Project work	Mech		0	0	16	8				
2		Mini Project	Mech		0	0	6	3				
3		Seminar	Mech		0	0	2	1				
4		Internship in industry or elsewhere	Mech		0	0	6	3				

E. Mandatory Courses / Audit Courses - 1+2

	Mandatory Courses												
S.No	Course Code	Course Name	Offering Dept	Catego ry	L	Т	P	С	Prerequisite				
1		Yoga and Mediation	Yoga	MC	0	0	2	0	Yoga and Mediation (Mandatory)				
	Any of the following two courses												
1		Induction Training	HSS	MC				nme as per uring First er					
2		Environmental Sciences	HSS	MC	0	0	0	0	Nil				
3		Essence of Indian Traditional Knowledge	HSS	MC	2	0	0	0	Nil				
4		Indian Constitution	HSS	MC	2	0	0	0	Nil				
5		Indian Traditional Knowledge	HSS	MC	1	0	0	0	Nil				
6		NSS/RRC/ROTRACT CLUB/ YRC/UBA/SWACHH BHARAT/STUDENT CLUBS	NSS Unit	MC	1	0	0	0	Nil				
7		Sports & Games Physical Education MC		0	0	0	0	Nil					

HUMANITIES AND SCIENCES COURSES

TECHNICAL ENGLISH	Category	L	T	P	Credit
	HSS	3	0	0	3

Preamble

Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making the students competent and employable in the globalised scenario

Prerequisite: NIL

Course Objective

- To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.)
- 2 To make them become effective communicators
 - To ensure that learners use Electronic media materials for developing language
- 4 To aid the students with employability skills.
- 5 To develop the students communication skills in formal and informal situations

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Listen, remember and respond to others in different scenario	Remember
CO2.	Understand and speak fluently and correctly with correct pronunciation in different situation.	Understand
CO3.	To make the students experts in professional writing.	Apply
CO4.	To make the students in proficient technical communicator.	Apply
CO5.	To make the students recognize the role of technical writing in their careers in business, technical and scientific field	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	L	L	M	M	M	-	S	-	S	S	-	S
CO2	-	-	-	-	-	-	L	-	-	S	-	S	M	-	S
CO3	-	•		L	-	•	•	L		-	-	L	M	M	-
CO4	L	•	-	-	-	M	-	L	M	S	L	S	S	M	S
CO5	M	-	L	S	-	-	-	-	-	-	-	S	M	-	S

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO COMMUNICATION

Self introduction —understanding SWOT and SOAR, Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

GRAMMAR AND VOCABULARY

Identify the different Parts of Speech-Word formation with prefixes and suffixes -Common Errors in English - Scientific Vocabulary (definition and meaning)— Technical Abbreviations and Acronyms, Sentence Pattern (SVOCA), Tense forms, Conditional Sentences, Impersonal Passive Voice, Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones — Homonyms - Note taking and Note making

SPEAKING SKILLS

Verbal and Non verbal Communication - Describing objects - Process Description- Interpretation of Images

and Films Speaking Practice - Telephone Etiquettes - Telephonic conversation with dialogue- Interpersonal Skills.

READING SKILLS

Reading for information- Technical articles, News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed – Technical Jargons

TECHNICAL WRITING

Types of paragraphs -- Technical and Non technical Report Writing/ Proposal (Attend a technical seminar and submit a report) Transcoding (Flow Chart, Bar Chart and Pie Chart) - Informal and Formal letters - Application letter- Resume Writing- Difference among Bio data, Resume and Curriculum Vitae, Digital resume Techniques, Statement of Purpose (SOP), Proof reading

Text Books

1. English for Engineers- Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

Reference Books

- 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.
- 4. Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

Alternative NPTEL/SWAYAM Course – Nil

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	-	1	-	-

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id	
1	Dr. Jennifer G Joseph	Professor & Head	English /AVIT	jennifer@avit.ac.in	
2	Dr. P.Saradha	Associate Professor	English /VMKVEC	saradhap@vmkvec.edu.in	

ENGLISH LANGUAGE	Category	L	T	P	Credit
LAB	HSS	0	0	4	2

Preamble

English Language Laboratory provides technological support to students. It acts as a platform for learning, practicing and producing language skills through interactive lessons and communicative mode of teaching.

Prerequisite : NIL

Course Objective

- 1 To understand communication nuisances in the corporate sector.
- To understand the role of mother tongue in second language learning and to avoid interference of mother tongue.
- 3 To improve the oral skills of the students communicate effectively through different activities
- 4 To understand and apply the telephone etiquette
- 5 Case study to understand the practical aspects of communication

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Give best performance in group discussion and interview	Understand
CO2.	Best performance in the art of conversation and public speaking.	Apply
CO3.	Give better job opportunities in corporate companies.	Apply
CO4.	Better understanding of nuances of English language through audio-visual experience and group activities.	Apply
CO5.	Speaking skills with clarity and confidence which in turn enhances their employability skills	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	S	M	S	-	L	-	-	S	S	M	•	-	-	M
CO2	M	-	-	-	-	-	-	-	M	S	-	M	M	-	M
CO3	M	-	•	•	•	-	-	•	•	S	•	M	•	-	M
CO4	M	-	-	-	-	-	-	-	•	M	•	-	M	-	M
CO5	M	-	-	-	-	-	-	-	-	M	-	-	M	-	S

S- Strong; M-Medium; L-Low

SYLLABUS

MODULE I

Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to songs, videos and understanding- (fill in the blanks) Telephone Conversation.

MODULE II

Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity. Interpreting and Analysing a research article - Approaches to Review Paper Writing - Structure of a research article - Referencing

MODULE III

Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual. Role Play

MODULE IV

Telepho	ne Etiquette, Dining Etic	quette, Meeting	Etiqu	ette, Corporate Et	iquett	te, Business I	Etiquette.
MODU	LE V						
Case stu	dy of Etiquette in differen	ent scenario					
Alterna	tive NPTEL/SWAYAN	1 Course – Nil					
S.No	NPTEL /SWAYAM (Instructor Hos			Institution	Duration	
	-		-				
Course	Designers						
S.No	Faculty Name	Designation		Department/Na of the College	Email id		
1	Dr. Jennifer G Joseph	Professor & He		English /AVIT		jennifer@avit.ac.in	
2	Dr. P.Saradha	Associate Profe	essor	English /VMKVEO		saradhap@v	mkvec.edu.in

BUSINESS ENGLISH	Category	L	T	P	Credit
	HSS	3	0	0	3

Preamble

Language is one of the most valued possessions of men. It acts as a repository of wisdom. Among all other languages English, the international language plays a vital role as a propeller for the advancement of knowledge in different fields and as a telescope to view the dream of the future.

Prerequisite: NIL

Course Objective

- 1 To impart and enhance corporate communication.
- 2 To enable learners to develop presentation skills
- To build confidence in learners to use English in Business context
- 4 To make them experts in professional writing
- 5 To equip students with employability and job searching skills

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Communicate with a range of formal and informal context	Understand
CO2.	Demonstrate interaction skills and consider how own communication is adjusted in different scenario.	Apply
CO3.	Use strengthened oral and written skills in the business context.	Apply
CO4.	Create interest in a topic by exploring thoughts and ideas.	Apply
CO5.	Have better performance in the art of communication	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	-	L	-	L	S	S	-	M	S	•	S	S	-	-
CO2	·	M	S	M	-	M	M	-	L	S	•	S	M	-	-
CO3	L	M	•	-	-	M	-	L	-	S	L	M	•	M	-
CO4	-	L	M	M	-	-	L	M	M	S	L	M	M	-	M
CO5	-	L	-	M	-	L	L	-	-	S	-	S	M	M	S

S- Strong; M-Medium; L-Low

SYLLABUS

BASICS OF LANGUAGE AND LISTENING SKILLS

Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills

SPEAKING SKILLS

Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology) Jargons- Technical and Business, Listening to TED Talks and discussion on the topic heard

READING SKILLS

Extempore, , Speaking activities- pair and group designed by the faculty, Group Discussion-Types of Interviews, Watching Documentary Films and Responding to Questions, Reading Skills-Skimming, Scanning, Understanding Ideas and making Inferences— FAQs—, Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions, reading for pleasure (motivational, short novels, classical etc)

CORPORATE COMMUNICATION

What is Corporate Communication? Types of Office communications -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers, Technical Articles – Written communication Project Proposals- E - Mail Netiquette - Sample E – mails Making Presentations on given Topics -Preparing Power Point Presentations-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters)

Text Books

1. English for Effective Communication - Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

Reference Books

- 1. Grammar Builder I, II, III Cambridge University Press.
- 2. Technical English Writing, Reading and Speaking Pickett and Lester, Harper and Row

Alternative NPTEL/SWAYAM Course – Nil

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration	
	-	-	-	-	

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. Jennifer G Joseph	Professor & Head	English /AVIT	jennifer@avit.ac.in
2	Dr. P.Saradha	Associate Professor	English /VMKVEC	saradhap@vmkvec.edu.in

TOTAL QUALITY	Category	L	T	P	Credit
MANAGEMENT	HSS	3	0	0	3

PREAMBLE:

Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the Total Quality Management concepts.
- 2. To practice the TQM principles.
- 3. To apply the statistical process control
- 4. To analyze the various TQM tools
- 5. To adopt the quality systems.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of quality and TQM at managerial level.	Understand
CO2: Practice the relevant quality improvement tools to implement TQM.	Apply
CO3: Analyse various TQM parameters with help of statistical tools.	Analysing
CO4: Assess various TQM Techniques.	Evaluate
CO5: Practice the Quality Management Systems in a different organization	Apply
Environment	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	-	-	-	-	-	L	L	L	M	L	M	-	-	-
CO2	M	-	-	-	L	L	-	L	M	M	-	L	-	-	M
CO3	S	S	M	S	S	-	-	L	-	L	-	L	L	M	L
CO4	L	M	S	L	M	-	L	-	L	M	L	M	-	-	-
CO5	L	L	M	-	L	M	S	S	M	L	L	M	-	-	M

S- Strong; M-Medium; L-Low

SYLLABUS:

INTRODUCTION

Concept of Quality and Quality Management - Determinants of quality of product & service - Quality costs - Analysis Techniques for Quality Costs - TQM Principles and Barriers & Implementation -Leadership - Concepts- Role of Top Management- Quality Council - Quality statements: vision, mission, Policy - SMART Goal setting - Strategic Planning.

TOM PRINCIPLES AND PHILOSOPHIES

Customer satisfaction – Perception of Quality- Customer Complaints - Service Quality- Customer Retention-Employee Involvement – Motivation- Empowerment – Teams - Recognition and Reward- Performance Appraisal - Continuous Process Improvement : Deming's Philosophy - Juran's Trilogy - PDSA Cycle- Taguchi Quality Loss Function - 5S principles and 8D methodology - Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC) & PROCESS CAPABILITY

Statistical Fundamentals – Measures of central Tendency & Dispersion - Population and Sample- Normal Curve-Control Charts for variables and attributes - OC curve - Process capability- Concept of six sigma- The Seven tools of Quality - New seven Management tools.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA - Business process re-engineering (BPR) – principles, applications, reengineering process, benefits and limitations.

QUALITY SYSTEMS

Introduction to IS/ISO 9004:2000 – quality management systems – Elements- Implementation of Quality System - Documentation- Quality Auditing- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

ENGINEERING	Category	L	T	P	Credit
MANAGEMENT AND ETHICS	HSS	3	0	0	3

PREAMBLE:

Engineering management provides technological problem-solving ability of engineering and the organizational to oversee the operational performance of complex engineering enterprises to Engineers. Engineers require honesty, impartiality, fairness, and equity, and dedication to the protection of the public health, safety, and welfare. Ethics emphasises the importance of moral issues, rights and duties of the employees through basic ethics confronting individuals and organizations engaged. It also emphasise values that are morally desirable in engineering practice and research. It allows them to understand various occupational crimes and learn the moral leadership.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To Understand the principles of planning at various levels of the organisation.
- 2. To analyse and practice the concepts of organizing, staffing to higher productivity.
- 3. To apply the concepts related to directing and controlling.
- 4. To understand and apply the case studies to practice code of ethics in organisation.
- 5. To apply the ethical principles in working environment.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

l '	
CO1: Understand the importance of planning principles in organization	Understand
CO2: Apply the various strategies of organising and staffing process.	Apply
CO3: Analyse various leadership skills and control techniques for shaping the organization.	Analyse
CO4: Understand and apply best ethical practices in organisation	Analyse
CO5: Analyse and Apply relevant ethical practices in engineering.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	M	L	S	M	M	L	S	S	S	S			
CO2	M	L	L	-	M	M	M	L	M	S	M	M			
CO3	M	M	L	-	M	M	M	L	L	S	S	M			
CO4	L	M	-	M	-	M	S	S	S	S	-	M			
CO5	M	M	-	L	-	M	S	S	S	S	-	M			

S- Strong; M-Medium; L-Low

SYLLABUS:

PLANNING

Nature and purpose of planning – planning process – types of planning – objectives – setting -Objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

ORGANISING

Nature and purpose – Formal and informal organization – organization chart – organization structure– types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.

DIRECTING

Foundations of individual and group behavior – motivation – motivation theories – motivational – Techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – Communication – process of communication – barrier in communication – effective communication – communication and IT.

CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of Computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

ETHICS IN ENGINEERING

Moral dilemmas -Uses of Ethical Theories- Engineering As Social Experimentation- Engineer's Responsibility For Safety-Codes of Ethics-Challenger - Employed Engineers Rights and Duties- Collective Bargaining - Occupational Crime - Global Issues- Multinational Corporation- Technology transfer - Engineers as managers - Consulting Engineers - Expert Witness-Moral Leadership.

TEXT BOOKS:

- 1. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8th edition.
- 2. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.
- 3. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York (2005).

REFERENCES:

- 1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, (1999).
- 2. Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management A global & Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007.
- 3. Andrew J. Dubrin, 'Essentials of Management', Thomson South-western, 7th edition, 2007.
- 4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics An Indian Perspective", Biztantra, New Delhi, (2004)
- 5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003).

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	mail id		
1	M. Manickam	Associate Professor	Management Studies	manickam@vmkvec.edu.in		
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in		

UNIVERSAL HUMAN VALUES –	Category	L	T	P	C
UNDERSTANDING HARMONY	HSS	3	0	0	3

Course Objectives:

- 1. Development of a holistic perspective based on self- exploration
- 2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

UNIT I Introduction

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNIT II Understanding Harmony in the Human Being

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body-Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT III Understanding Harmony in the Family and Society

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship 4.Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and coexistence as comprehensive Human Goals –Gratitude

UNIT IV Understanding Harmony in the Nature and Existence

Whole existence as Coexistence -. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature-Holistic perception of harmony at all levels of existence.

UNIT V Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values -.Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order- Competence in professional ethics

Total Hours: 45 Hours

Text Book

1.Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.

COUF	COURSE DESIGNERS								
S.NO	COURSE INSTRUCTOR	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID					
1	Dr.S.P.Sangeetha	Vice Principal(Academics)	AVIT	sangeetha@avit.ac.in					
2	Dr.Jennifer G Joseph	HoD-H&S	AVIT	Jennifer@avit.a.cin					

BASIC SCIENCES COURSES

ENGINEERING	Category	L	T	P	Credit
MATHEMATICS	BS	2	1	0	3

Preamble

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices had been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relation can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

Prerequisite : NIL								
Course Objective								
1 To recall the advanced matrix knowledge to Engineering problems.								
2 To equip themselves familiar with the functions of several variables.								
3 To improve their ability in solving geometrical applications of differential calculus								
problems								
4 To examine knowledge in multiple integrals.								
5 To improve their ability in Vector calculus.								
Course Outcomes: On the successful completion of the course, students will be able to								
CO1. Apply the concept of orthogonal reduction to diagonalise the given Apply								
matrix.								
CO2. Find the radius of curvature, circle of curvature and centre of Apply								
curvature for a given curve.								
CO3. Classify the maxima and minima for a given function with several Apply								
variables, through by finding stationary points								
CO4. Find double integral over general areas and triple integral over general Apply								
volumes								
CO5. Apply Gauss Divergence theorem for evaluating the surface integral. Apply								
Mapping with Programme Outcomes and Programme Specific Outcomes								
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03								
CO1 S S M L M								
CO2 S S M L M								
3 S S M L M								
CO4 S S M L M								
CO5 S S M L M								

S- Strong; M-Medium; L-Low

SYLLABUS

MATRICES

Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof).

DIFFERENTIAL CALCULUS&PARTIAL DERIVATIVES

Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature. Partial Derivatives – Total Differentiation – Maxima and Minima -Constrained Maxima and Minima by Lagrangian Multiplier Method.

ORDINARY DIFFERENTIAL EQUATIONS

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters -Simultaneous first order linear equations with constant coefficients.

MULTIPLE INTEGRALS

Introduction of multiple integration by examples of Double and Triple integral-Evaluation of double and Triple Integration(in both Cartesian and polar coordinates)-Change of order of integration.

VECTOR CALCULUS

Scalar and vector point functions, Gradient, divergence, curl, Solenoidal and irrotational vectors, Vector identities (without proof), Normal and Directional derivatives, Solenoidal and irrotational field, Integration of vectors: Definition of Line, surface and volume integrals, Green's, Gauss divergence and Stoke's theorems (Statements only)

Text Books

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2019).
- 2. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delhi (2020).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).

Reference Books

- 1. Engineering Mathematics", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. A.K.Bhuvaneswari	Assistant Professor	Mathematics/AVIT	bhuvaneswari@avit.ac.in
2	Dr.G.Selvam	Associate Professor	Mathematics/VMKVEC	selvam@vmkvec.edu.in

FREAMBLE										
Engineering Physics is the study of advanced physics concepts and their applications in various										
technological and engineering domains. Understanding the concepts of laser, types of lasers, the										
propagation of light through fibers, applications of optical fibers in communication, production and										
applications of ultrasonics will help an engineer to analyze, design and to fabricate various conceptual										
based devices.										
PREREQUISITE: NIL										
COURSE OBJECTIVES										
1 To recall the properties of laser and to explain principles of laser										
2 To assess the applications of laser										
3 To detail the principles of fiber optics										
4 To study the applications of fiber optics										
5 To explain various techniques used in Non-destructive testing										
COURSE OUTCOMES										
On the successful completion of the course, students will be able to										
CO1. Understand the principles laser, fiber optics and ultrasonics Understand										
CO2. Understand the construction of laser, fiber optic and ultrasonic Understand										
equipments										
CO3. Demonstrate the working of laser, fiber optic and ultrasonic based components and devices										
CO4. Interpret the potential applications of laser, fiber optics and ultrasonics in various fields										
CO5. Differentiate the working modes of various types of laser, fiber optic and Analyze										
ultrasonic devices.										
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES										
COS PO PO1 PO1 P										
1 2 3 4 5 6 7 8 9 0 1 2 1 2										
CO1 S M M M M										
CO2 S L M M M										
CO3 S M M M M										
CO4 S M M M S M M S M										
CO5 S M M M M M M										
S- Strong; M-Medium; L-Low										

PHYSICAL SCIENCES

PART A - ENGINEERING PHYSICS

PREAMBLE

T

0

L

2

Category

Basic

Sciencs

P

0

Credit

2

SYLLABUS

LASERS: Laser characteristics - Stimulated Emission - Population Inversion - Einstein coefficients - Lasing action - Types of Laser - Nd:YAG laser, CO2 laser, GaAs laser - Applications of Laser - Holography - construction and reconstruction of a hologram.

FIBRE OPTICS: Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

ULTRASONICS: Ultrasonic production: Magnetostriction and piezo electric methods – Determination of velocity of ultrasonic waves (acoustic grating) – Applications of ultrasonics

TEXT BOOK

- 1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.
- 2. Palanisamy P. K., Engineering Physics, Scientific Publishers, 2011.
- 3. Avadhanulu M. N., Kshirsagar P. G., Arun Murthy T. V. S., A Textbook of Engineering Physics, S. Chand Publishing, 2018.

REFERENCE BOOKS

- 1. Beiser, Arthur, Concepts of Modern Physics, 5th Edition, McGraw-Hill, 2009.
- 2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.
- 3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2012.
- 4. Srivastava S. K., Laser Systems and Applications 3rd Edition, New Age International (P) Ltd Publishers, 2019.
- 5. Ajoy Ghatak, Thyagarajan K., Introduction To Fiber Optics, Cambridge India, 2013.

COURSE DESIGNERS								
S.No	Name of the Faculty	Designation	Department	Mail ID				
1	Dr. C. SENTHIL	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.i				
	KUMAR			<u>n</u>				
2	Dr. R. SETHUPATHI	ASSOCIATE	PHYSICS	sethupathi@vmkvec.edu.in				
		PROFESSSOR		_				

PHYSICAL SCIENCES PART-B - ENGINEERING CHEMISTRY	Category	L	Т	P	Credit
(Common to all Branches)	BS	2	0	0	2

Preamble

The objective of this course is to better understand the basic concepts of chemistry and its applications in diverse engineering domains. It also imparts knowledge on the properties of water and its treatment methods, Electrochemistry, corrosion and batteries, properties of fuel and combustion. This course also provides an idea to select the material for various engineering applications and their characterization.

Prerequisite	:	NIL
---------------------	---	-----

Course Objective

- To Provide the knowledge on water treatment.
- To explain about the importance of electrochemistry, mechanism of different corrosion and principle and working of batteries.
- 3 To explain different types of fuel, properties and its important features.

Course Outcomes: On the successful completion of the course, students will be able to understand

CO1	Estimate the hardness of water Apply and Identify suitable water treatment methods.	Apply
CO2	Describe terms involved in electrochemistry, the control methods of corrosion and working of energy storage devices.	Analyze
CO3	Understand the quality of fuels from its properties and the important features of fuels	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	-	M	S	M	-	-	-	M	M	M	M
CO2	S	S	L	L	-	S	S	S	-	-	-	S	M	L	M
CO3	S	M	M	L	L	L	М	М	-	-	-	S	-	М	М

S- Strong; M-Medium; L-Low

SYLLABUS

WATER TECHNOLOGY

Hardness of water – types – expression of hardness – units – estimation of hardness of water by EDTA. Boiler troubles - Treatment of boiler feed water – Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning). External treatment – Ion exchange process, zeolite process – Domestic water treatment - desalination of brackish water – Reverse Osmosis and Electrodialysis.

ELECTROCHEMISTRY, CORROSION AND BATTERIES

Electrochemistry: Electrode potential - Nernst equation - Electrodes (SHE, Calomel and Glass) - Galvanic cell- Electrochemical cell representation - EMF series and its significance. Corrosion - Definition causes and effects, Classification, Types of corrosion- dry corrosion, Wet corrosion, Factors influencing rate of corrosion, Corrosion control methods - Sacrificial anode method and impressed

current cathodic method.

Batteries: Terminology- Daniel cell – Dry cell - Lead-acid accumulator- Nickel-Cadmium batteries, Lithium batteries: Li/SOC12 cell - Li/I2 cell- Lithium ion batteries. Fuel cells: Hydrogen-oxygen fuel cell, Solid oxide fuel cell (SOFC)

FUELS AND COMBUSTION

Fuels: Introduction – classification of fuels – coal – analysis of coal (proximate and ultimate). Carbonization – manufacture of metallurgical coke (Otto Hoffmann method) – petroleum – manufacture of synthetic petrol (Bergius process). Knocking – octane number – cetane number – natural gas – compressed natural gas (CNG). Liquefied petroleum gases (LPG) – power alcohol and biodiesel. Combustion of fuels: Introduction – calorific value – higher and lower calorific values-theoretical calculation of calorific value – ignition temperature – spontaneous ignition temperature – explosive range – flue gas analysis (ORSAT Method).

Text Books

- 1. Engineering Chemistry by Jain and Jain, 16th Edition, Dhanpat Rai Publishing Company, New Delhi, 2017
- 2. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.

Reference Books

- 1. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane, 3rd Edition, McGraw Hill, 1980
- 2. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 3. Physical Chemistry, by P. W. Atkins, Julio de Paula, 8th Edition, Oxford University press, 2007 Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. A.R. Sasieekhumar	Assistant Professor	CHEM/NMKNEC	sasieekhumar@vmkvec. edu.in
2	Dr. R. Nagalakshmi	Professor	I CHEMI AVII	nagalakshmi.chemistry @avit.ac.in

		CMA DE MATERNAL C	CATEGORY L		Т	P	С	
		SMART MATERIALS	Basic Sciences	3	0	0	3	
PREA	MBLE							
	_	gives an outlook about various types of materials ha	• • • • • • • • • • • • • • • • • • • •		•	•	••	
•		dents learn about Properties of Crystalline Material				and their	industrial	
applica	itions, char	acteristics and industrial applications of Magnetic a	nd Superconducting	g material	S.			
PRER	EQUISIT	E: Physical Sciences						
COUR	SE OBJE	CTIVES:						
1	To impar	t the basic properties of different materials.						
2	To under	stand the structure of crystalline materials.						
3	To under	stand the properties of smart materials and realize i	ts industrial applica	tions.				
4	To learn	the synthesis of Nano materials and carbon nanotub	oes.					
5		the properties, classification and relevant application						
6	To under	stand the concept of superconductivity, properties	of super conductor a	and their in	ndustrial a	application	ıs.	
COUR	SE OUT	COMES:						
After	successfu	l completion of the course, learner will be able to						
CO1.	Understa	nd the basic properties of various materials.				Understar	nd	
		structure of Crystalline Materials				Apply		
		basic knowledge and recognize the applications of S	Smart Materials			Apply		
CO4.	Apply Apply							
CO5.	5. Gain the knowledge about the properties of magnetic materials and familiarize their applications. Apply							
CO6.	O6. Gain the knowledge about Superconducting materials Apply							
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES								

COS

CO1

CO2

CO3

CO4

CO5

CO6

PO

1

S

S

S

S

S

S

PO

2

S

M

S

S

M

S – strong, M- Medium, L – Low

PO

3

S

S

S

S

M

PO

4

S

S

S

S

PO

5

M

M

M

PO

6

-

PO

7

PO

8

PO

9

PO1

0

PO1

1

PO₁

S

S

S

S

S

2

POS

1

POS

2

POS3

SYLLABUS

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures – determination of interplanar distance (d).

SMART MATERIALS: Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application – SMA in Actuators and Blood clot filters, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and industrial applications (Core of the Transformer).

NANO MATERIALS: Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications; Chemical Sensors.

MAGNETIC MATERIALS: Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials – Applications of Magnetic materials (Magnets in Generators and MRI scan).

SUPER CONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Industrial Applications of superconductors (SQUID, Cryotrons and Maglev Trains).

TEXT BOOKS

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.
- 2. A.K. Katiyar and C.K. Pandey, Engineering Physics Theory and Practical, Wiley Publisher, 2015.

REFERENCES

- 1. Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
- 2. William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition, Wiley Publisher, 2018.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. G. Suresh	Associate Professor	Physics	suresh.physics@avit.ac.in
2.	Dr. R. N. Viswanath	Professor	Physics	rnvishwanath@avit.ac.in
3.	Dr. B. Dhanalakshmi	Associate Professor	Physics	dhanalakshmi.phys@avit.ac.in

PHYSICAL SCIENCES LAB: PART A – REAL AND VIRTUAL LAB IN PHYSICS Category L T P Credit Basic Sciencs 0 0 2 1

PREAMBLE

In this laboratory, experiments are based on the calculation of physical parameters like young's modulus, rigidity modulus, viscosity of water, wavelength of spectral lines, thermal conductivity and band gap. Some of the experiments involve the determination of the dimension of objects like the size of a microparticle and thickness of a thin wire. In addition to the above real lab experiments, students gain hands-on experience in virtual laboratory.

PREREQUISITE

NIL

COURSE OBJECTIVES

- 1 To impart basic skills in taking reading with precision of physics experiments
- 2 To inculcate the habit of handling equipments appropriately
- 3 To gain the knowledge of practicing experiments through virtual laboratory.
- 4 To know the importance of units
- 5 To obtain results with accuracy

COURSE OUTCOMES

On the successful completion of the course, students will be able to

•	
CO1. Recognize the importance of units while performing the experiments, calculating the physical parameters and obtaining results	Understand
CO2. Operate the equipments with precision	Apply
CO3. Practice to handle the equipments in a systematic manner	Apply
CO4. Demonstrate the experiments through virtual laboratory	Apply
CO5. Calculate the result with accuracy	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	S	S													
CO2	S	S	M	M	S				M			M	M		M
CO3	S														
CO4	S	S	M	M	S							S	M		M
CO5	S	S													

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Young's modulus of a bar Non-uniform bending
- 2. Rigidity modulus of a wire Torsional Pendulum
- 3. Viscosity of a liquid Poiseuille's method
- 4. Velocity of ultrasonic waves in liquids Ultrasonic Interferometer
- 5. Particle size determination using Laser
- 6. Wavelength of spectral lines grating Spectrometer
- 7. Thickness of a wire Air wedge Method

- Thermal conductivity of a bad conductor Lee's disc
- 9. Band gap determination of a thermistor Post Office Box10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A - Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in		
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in		

	CAL SCIENCES - ENGINEERING	Category	L	Т	P	Credit
	CMISTRY LAB	BS	0	0	2	1
(Comm	on to all Branches)	22	v		_	_

Preamble

Engineering Chemistry Lab experiments explains the basics and essentials of Engineering Chemistry. It also helps the students to understand the applications of Engineering Chemistry. The electrodes, Cell and batteries study gives clear basic application oriented knowledge about electrochemistry. Water technology study gives the idea about hardness and its disadvantages. Now-a-days the practical and handling of equipments are needed for our fast growing life style.

Prerequisite: NIL

Course Objective

- To impart basic skills in Chemistry so that the student will understand the engineering concept.
- 2 To inculcate the knowledge of water and electrochemistry.
- To lay foundation for practical applications of chemistry in engineering aspects.

Course Outcomes: On the successful completion of the course, students will be able to

CO1	Understand the basic skills for his/her future studies.	Understand
CO2	Analyze the water comprehensively.	Apply
CO3	Apply the practical knowledge in engineering aspects	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	-	L	M	M	S	-	-	-	M	-	-	-
CO2	S	M	M	-	L	M	M	L	-	-	-	M	-	-	-
CO3	S	S	M	_	L	M	M	M	-	-	-	M			

S- Strong; M-Medium; L-Low

SYLLABUS

LIST OF EXPERIMENTS

- 1. Determination of Hardness by EDTA method
- 2. Estimation of Hydrochloric acid by conductometric method
- 3. Acid Base titration by pH method
- 4. Estimation of Ferrous ion by Potentiometric method
- 5. Determination of Dissolved oxygen by Winkler's method
- 6. Estimation of Sodium by Flame photometer
- 7. Estimation of Copper from Copper Ore Solution
- 8. Estimation of Iron by Spectrophotometer

Text Books

1. Engineering Chemistry Lab Manual by VMU. Delhi.

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id		
1	Dr. R. Nagalakshmi	Professor	I CHEMI/AVII	nagalakshmi.chemistry @avit.ac.in		
2	A. Gilbert Sunderraj	Assistant Professor	CHEM/ VMKVEC	gilbertsunderraj@vmkvec . edu.in		

INDUSTRIAL MATERIALS	Category	L	Т	P	Credit
	CC	3	0	0	3

Preamble:

Industrial Material is a part of the long chain in the design and manufacturing process. It deals with the ideas, the design, the testing, and prototyping of new industrial products. To solve the major problems of the world and their essential skills are, in-depth knowledge and application of chemistry and creativity with chemicals.

Prerequisite: NIL

Course Objective

- 1 To Describe the various metallic materials.
- 2 To Apply the various smart materials for industries.
- 3 To Distinguish the lubricants in the industries.
- 4 To Categorize various types of paints using in the industries.
- 5 To Distinguish the various petroleum products.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Discuss the various metallic materials using in industries.	Understand
	<u> </u>	Onderstand
CO2.	Interpret the various smart materials and its applications.	Apply
CO3.	Compare the different lubricants with their properties.	Analyze
CO4.	Relate the various surface coatings.	Apply
CO5.	Categorize the different petroleum products.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	M	S	-	-	-	-	-	M	M	M
CO2	S	M	-	-	-	S	S	1	-	-	-		M	M	M
CO3	S	M	ı	-	-	S	M	ı	-	-	•	-	M	M	M
CO4	S	S	-	-	-	M	S	ı	-	-	-	-	M	M	M
CO5	S	S	-	-	-	S	M	-	-	-	-	-	M	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

METALS AND ALLOYS

Engineering materials: Ferrous materials, Aluminium, Copper, Nickel, Magnesium, Titanium alloys for engineering applications. Phase diagrams, properties and typical alloys with reference to their applications.

SMART MATERIALS

Shape Memory Alloys, Varistors and Intelligent materials for bio-medical applications, Polymers and Plastics from industry. Development, important properties and smart applications of polymeric materials.

LUBRICANTS

Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting) Solid and semisolid lubricants, synthetic lubricants. Properties of lubricants (viscosity index, cloud point, pour point) and their determination.

PAINTS

surface Coatings: Objectives of coatings surfaces, preliminary treatment of surface, classification of surface coatings- Paints, pigments, Oil paint, Vehicle, modified oils, Pigments, toners and lakes pigments, Fillers, Thinners, Enamels, emulsifying agents.

Special paints (Heat retardant, Fire retardant, Eco-friendly paint, Plastic paint), Dyes, Wax polishing, Water and Oil paints, Metallic coatings (electrolytic and electroless), metal spraying and anodizing.

PETROLEUM AND PETROCHEMICAL INDUSTRY

Composition of crude petroleum- Refining and different types of petroleum products and their applications - Reforming Petroleum and non-petroleum fuels (LPG, CNG, LNG, bio-gas, fuels derived from biomass) - synthetic fuels (gases and liquids).

Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene, Butadiene, Toluene and its derivatives Xylene.

Text Books

- 1. Industrial chemistry by B.K.Sharma. Goel publishing home.
- 2. Engineering Material Technology, 5th edition, by James A.Jacobs & Thomas F. Kilduff.

Reference Books

- 1. An Introduction to Industrial chemistry by C,A.Heaton. Springer publications.
- 2. Engineering materials1: An introduction to properties, applications and design by Michael F Ashby and David R H Jones, Elsevier Butterworth Heinmann Publishers, 2007

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
	Mr.A.Gilbert sunderraj	Associate Professor	J	gilbertsunderraj@vmkvec. edu.in
2	Dr.R.Nagalakshmi	Professor	Chemistry/AVIT	nagalakshmi.chemistry@a vit.ac.in

			MAT	TIEN	A TT/	CC EO	D (Catego	PX7	L	Т		P	Т ,	Credit
				HEM ECH		CS FO	K	BS)1 y	2	1		<u>. </u>	<u> </u>	3
			IVI	SCIE				Do		_			U		3
Pream	ble			beir	21101	<u> </u>									
		prov	ides	a soli	id un	dergra	duate	found	datio	n in pa	artial	differe	ential	eaua	ations.
		-				_				same tii				-	
_	•	-								ractical	-				
	artial differential equations are derived from physics and instruct the methods for solving bundary value problems, that is, methods of obtaining solutions which satisfy the conditions														
	quired by the physical situations such as Heat flow equations of one dimension and two														
dimens	sions. I	Fourie	er ana	lysis	is to 1	represe	ent con	nplica	ited f	function	s in te	rms of	f simp	ole pe	riodic
functio	ns, nai	nely	cosin	es and	d sine	s. Stat	istics i	s peri	neate	ed by pr	obabil	ity. St	atisti	cs has	s been
										es by de					
										for est					
relation	nship.														
Prereg			gineer	ing M	lather	natics									
Course	e Obje	ctive													
1 T	o form	ulate	and s	solve 1	partia	l diffei	rential	equat	ions	•					
$\frac{2}{T}$	To represent a periodic function as a Fourier series.														
3 T	To be familiar with applications of partial differential equations.														
	-				_		_			atistical		ots to	inclu	de m	easures
	f centra	al ten	dency	y, curv	e fitt	ing, co	rrelati	on an	d reg	ression.					
										variable					
										course					to
CO1.				thodo	logy	of forn	ning ar	nd sol	ving	partial o	differe	ntial	A	pply	
~~	-	tions								1 0					
CO2.			_				_			dy of en	_	ing	A	pply	
	1 -							cosine	es an	d compu	ite the				
CO2						rically.					mmc 1. 1		A	1_	
CO3.										ineering r series	proble	ems II	ke A	pply	
CO4.										iven dat	han a	avoluo	to A	nnlr	
004.		-	_						_	r the dat		vaiud	iie A	pply	
CO5.										nuous ra			1	pply	
CO3.		iy coi ibles.		s or pr	Obab	iiity, u	isciele	anu C	Onu	nuous 1 <i>a</i>	muom			рргу	
Mappi				nme (Outco	mes a	nd Pr	ogran	nme	Specifi	c Outo	omes	ı		
CO	PO1	PO2		PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2	PSO3
CO1	M	M	L					M	-			M	-	1	
CO2	S	M	M	L	-			M	-			M		-	-
CO3	S	M	M	L				M				M	-	-	
CO4	S	M	L					M				M			
CO5	S	S	M	L				M				M			
	<u> </u>	I-Med	dium	; L-L	ow										
SYLL	S- Strong; M-Medium; L-Low SYLLABUS														

PARTIAL DIFFERENTIAL EQUATIONS

Formation - Solutions of standard types f(p,q)=0, clairauts form, f(z,p,q)=0, f(p,x)=g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients.

FOURIER SERIES

Dirichlet's conditions – General Fourier series – Half -range Sine and Cosine series – Parseval's identity – Harmonic Analysis.

BOUNDARY VALUE PROBLEMS

Classification of second order linear partial differential equations — Solutions of one — dimensional wave equation, one — dimensional heat equation — Steady state solution of two — dimensional heat equation — Fourier series solutions in Cartesian coordinates.

STATISTICS

Measures of central tendency, Curve fitting – Straight line and Parabola by least square method, Correlation, Rank correlation and Regression.

VECTOR CALCULUS

Probability Concepts – Random Variables - Discrete and Continuous Random Variables-Probability mass function – Probability density functions - Moment Generating Functions and their properties.

Text Books

- 1. S.C. Gupta, V.K. Kapoor, "Fundamentals of mathematical statistics", Sultan Chand & Sons (2017).
- 2. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. T. Veerarajan, "Probability, Statistics and Random processes" 2nd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi (2006).

Reference Books

- Dr.A. Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).
- 2. Dr.A. Singaravelu, "Probability and Statistics", Meenakshi Agencies, Chennai (2016).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

S.No	Faculty Name	Designation	Department/Name of	Email id
			the College	
1	Dr. S. Punitha	Associate Professor	Mathematics/VMKVEC	punitha@vmkvec.edu.in
2	Ms. S. Sarala	Associate Professor	Mathematics/AVIT	sarala@avit.ac.in

NUMERICAL METHODS	Categor	L	T	P	Credit
FOR MECHANICAL	y				
SCIENCES	BS	2	1	0	3

Preamble

This course provides an introduction to the basic concepts and techniques of numerical solution of algebraic equation, system of algebraic equation, numerical solution of differentiation, integration, interpolations and applications to computer science and engineering, and science areas and develops problem solving skills with both theoretical and computational oriented problems.

Prerequisite: 1.Engineering Mathematics

2. Mathematics for Mechanical Sciences

Course Objective

- 1 To familiar with numerical solution of linear equations
- 2 To familiar with numerical solution of Non-linear equations
- To be get exposed to finite differences and interpolation and the numerical Differentiation and integration
- 4 To find numerical solutions of ordinary differential equations
- 5 To find numerical solutions of partial differential equations

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Solve the system of linear algebraic equations and single non linear	Apply
	equations arising in the field of Mechanical Engineering.	
CO2.	Apply methods to find intermediate numerical value & polynomial	Apply
	of numerical data.	
CO3.	Apply methods to find integration, derivatives of one and two variable	Apply
	functions.	
CO4.	Solve the initial value problems using single step and multistep	Apply
	methods.	
CO5.	Solve the boundary value problems using finite difference methods.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO	DO4	DO5	PO6	PO7	PO	PO	PO1	DO11	DO12	DCO1	DCO2	PSO3
CO	POI	r O2	3	PO4	PO5	POO	PO/	8	9	0	POII	PO12	P301	PSU2	PSU3
CO1	S	M	L		-			L				M			
CO2	S	M	L		-			L				M			
CO3	S	S	L					L				M			
CO4	S	S	L	L	-			L				M			
CO5	S	S	L	M				L				M			

S- Strong; M-Medium; L-Low

SYLLABUS

SOLUTION OF LINEAR EQUATIONS

Solution of linear system – Gaussian elimination and Gauss-Jordan methods – LUdecomposition methods – Jacobi and Gauss-Seidel iterative methods – sufficient conditions for convergence – Power method to find the dominant eigenvalue and eigenvector.

SOLUTION OF NONLINEAR EQUATIONS

Solution of nonlinear System – Bisection method – Secant method – Regula falsi method – Newton-Raphson method for f(x) = 0 – Order of convergence – Horner's method.

METHODS OF INTERPOLATION, NUMERICAL DIFFERENTIATION AND

INTEGRATION

Newton's forward, backward and divided difference interpolation —Lagrange's interpolation — Numerical Differentiation and Integration —Trapezoidal rule —Simpson's 1/3 and 3/8 rules -Curve fitting -Method of least squares and group averages.

INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

Euler's method – Euler's modified method – Taylor's method and Runge-Kutta method for simultaneous equations and 2nd order equations -Multistep methods – Milne's and Adams' methods.

BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

Numerical solution of Laplace equation and Poisson equation by Liebmann's method – s lution of one dimensional heat flow equation – Bender-Schmidt recurrence relation – Crank -Nicolson method – Solution of one dimensional wave equation.

Text Books

- 1. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers (2015).
- 2. S.R.K. Iyengar, R.K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering Computations", New Age International publishers, 6th Edition (2012).
- 3. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2008).

Reference Books

- 1. Joe D. Hoffman, Steven Frankel, "Numerical Methods for Engineers and Scientists", 3rd Edition, Tata Mc-Graw Hill.(New York) (2015).
- 2. Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", MC Graw Hill Higher Education (2010).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

S.No	Faculty Name	Designation	Department / Name of the College	Email id
1	Dr. M.Vijayarakavan	Associate Professor	Mathematics/VMKVE C	vijayarakavan@vmkvec.edu <u>.in</u>
2	Dr. S. Gayathri	Assistant Professor	Mathematics/AVIT	gayathri@avit.ac.in

RESOURCE MANAGEMENT	Category	L	T	P	Credit
TECHNIQUES	BS	2	1	0	3

PREAMBLE

Operations Research is the study of optimization techniques and its helps in solving problems in different environments that need decisions like, Inventory control problems, Maintenance and Replacement problems, Sequencing and Scheduling problems, Assignment of Jobs to applicants, Transportation problems, Network problems and Decision models. Entire subject is useful for all resource managers of various fields.

	ful for all resource managers of various fields.	
	quisite : NIL	
Cours	se Objective	
	To be thorough with linear programming problem and formulate a real wo a mathematical programming model\	orld problem as
	To Study and acquire knowledge on engineering and Managerial Assignment and scheduling problems.	solutions in
	To acquire skills in handling techniques of PERT, CPM and sequence perform operation among various alternatives.	cing model to
4	To be get exposed to the concepts of Inventory control.	
5	To study decision theory and game theory techniques to analyze the real w	orld systems
Cours	se Outcomes: On the successful completion of the course, students will	be able to
	Formulate the Linear programming problem. Conceptualize the feasible region. Solve the LPP with two variables using graphical method and by simplex method.	Apply
CO2.	Solve specialized linear programming problems like the Transportation and Assignment problems.	Apply
CO3.	Solve network problems using CPM, PERT techniques and sequencing model.	Apply
CO4.	Design a continuous or periodic review inventory control system	Apply
CO5.	Work in a team, specifically to solve larger problem, communicate technical knowledge. Partition a problem into smaller tasks and complete tasks on time.	

Mapp	oing w	ith P	rogra	amme	<u>Out</u>	comes	and P	rogra	ımme	Speci	fic Ou	tcome	S		
co	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	L			S	-			S	-		-
CO2	S	S	M	L	L			S				S			
CO3	S	S	M	L	S			S				S			
CO4	S	S	S	M				S				S			
COS	S	S	S	M	M			S				S			

S- Strong; M-Medium; L-Low

SYLLABUS

LINEAR MODELS: Linear Programming Techniques: Formulation of linear programming problem, applications and limitations, Graphical method, Simplex Method – The Big –M

method –Duality principle

TRANSPORTATION AND ASSIGNMENT MODELS: Transportations problem: North West Corner Method, Least Cost Method, Vogel's Approximation Method, Modified Distribution Method, Unbalance and Degeneracy in Transportation Model, Assignment problem: Hungarian algorithm, Unbalanced Assignment problems - Maximization case in Assignment problems, traveling salesman problem.

NETWORK MODELS: Basic terminologies, constructing a project network, network computations in CPM and PERT, Sequencing Models: Scheduling – processing n jobs through two machines, processing n jobs through three machines, processing n jobs through m machines.

INVENTORY MODELS: Variables in inventory problems – Economic Order Quantity Model – Purchasing Model (with and without shortages) – Manufacturing Model (with and without shortages) - Stochastic Inventory Model (Stock in discrete and continuous units). Inventory models with quantity discount, safety stock, multi-item deterministic model.

DECISION MODELS: Decision Model – Game theory – Two Person Zero sum game – Algebraic solutions Graphical solutions, Matrix Oddment method for nxn games (Arithmetic Method) – Replacement Models: Replacement of Items due to deterioration with and without time value of Money, Group replacement policy.

TEXTBOOKS:

- 1. H.A.Taha, "Operations Research: An Introduction", 10th Edition, Prentice Hall of India (2019).
- 2. F.S Hillier and G.J. Lieberman, "Introduction to Operations Research: Concept and Cases", McGraw-Hill International (2012).

REFERENCES:

- 1. Kanti Swarup, P.K.Gupta, Man Mohan, "Operations Research", S.Chand & Sons, New Delhi (2014).
- 2. Sundarasen.V, Ganapathy Subramaniyam, K.S, Ganesan.K. "Resource Management Techniques", A.R. Publications, Chennai (2013).
- 3. Premkumar Gupta, D.S. Hira, "Operations Research", S.Chand & company New Delhi (2014).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

S.No	Faculty Name	Designation	Department/Name of	Email id
			the College	
1	Dr.S.Punitha	Associate Professor	Mathematics	punitha@vmkvec.edu.in
2	Dr. M.Thamizhsudar	Associate Professor	Mathematics	thamizhsudar@avit.ac.in

	PRO	BABI	LITY AN	D (Catego	rv	L	T		P		Credit	
			ISTICS		BS	-,	2	1		0		3	
Preamble			3 - 2 - 2 - 2	I					I	_	1	*	
	Probabilistic and statistical analysis is mostly used in varied applications in Engineering and												
Science. Stat													
skills on anal					_			-				-	
factors. Stati													
methods to m													
	more specification-conforming product. Based on this, the course aims at giving adequate exposure in random variables, probability distributions, regression and correlation, test of												
hypothesis an				iity di	moun	ons,	regres	oioii ai	10 001	Toluti	011, 1	est of	
Prerequisite		ı quaii	ty control.										
Course Objective 1 To get the knowledge on concepts of random variables and distributions with respect to													
	To get the knowledge on concepts of fundom variables and distributions with respect to												
how the	how they are applied to statistical data.												
2 To acqu	To acquire skills in handling situations involving more than one random variable and												
•	functions of random variables												
3 To acqu													
10 acqu	To acquire knowledge of Testing of Hypothesis useful in making decision and test them by												
	means of the measurements made on the sample.												
4 To be	⁴ To be exposed to statistical methods designed to contribute to the process of making												
scientifi	scientific judgments in the face of uncertainty and variation												
5 To unde	erstand the	conce	nt of Qual	ity con	trol and	d the	lise o	f opera	ting cl	naract	eristi	c (OC)	
	n Acceptan		-	ity con	tioi aii	u tiic	use of	opera	ung Ci	iaracı	CIISTI	(00)	
			1 0	1 4		.1		4 1	4 •11		11 4		
Course Outc)	
	ct an appro					o aet	ermine	probat	onnty	A	pply		
	tion for sol						C1 '	• ,	1				
	ve the marg	ginal a	nd condition	onal dis	tributio	ons o	t bivar	ıate ran	dom	A	pply		
	ibles.		2.1		-								
	ly the conce										pply		
	pret results		•		•			-		d A	pply		
	mpare mea												
_	are Control							-	-		pply		
	nate wheth		t is accepta	able or	unacce	ptabl	le based	d on acc	ceptan	ce			
	oling plans.												
Manning wif	h Progran	nme O	outcomes a	nd Pro	gramı		1	Outco	mes				
Mapping Wil		PO4	PO5 PO6	PO7	PO8	PO 9	PO1	PO11	PO12	PSO1	PSO2	PSO3	
CO PO1	PO2 PO3	PU4		1		9	0						
CO PO1					T,				M				
CO PO1	S M	L			L L				M M				
CO PO1	S M S M S M				L L L				M M M				
CO PO1 CO1 S CO2 S CO3 S CO4 S	S M S M S M S M	L L L L			L L L				M M M				
CO PO1 CO1 S CO2 S CO3 S CO4 S CO5 S	S M S M S M S M S M	L L L L M	 		L L				M M				
CO PO1 CO1 S CO2 S CO3 S CO4 S	S M S M S M S M S M	L L L L M	 		L L L				M M M			 	

STANDARD DISTRIBUTION

Standard Distributions - Binomial, Poisson, Geometric, Uniform, Exponential, Normal distributions.

TWO DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Regression Analysis

TESTING OF HYPOTHESIS

Sampling distributions – Statistical hypothesis – Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) - Chi-square Tests for Goodness of fit - independence of attributes.

DESIGN OF EXPERIMENTS

Analysis of Variance – One Way Classification – Two Way Classification – Completely Randomized Design – Randomized Block Design – Latin Square Design.

STATISTICAL QUALITY CONTROL

Introduction – Process control – Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits – Acceptance sampling – single sampling, double sampling, multiple sampling and sequential sampling.

Text Books

- 1. S.P. Gupta, "Statistical Methods", 45th Edition, Sultan Chand & Sons Publishers (2017).
- Douglas C. Montgomery and George C.Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley (2013).

Reference Books

- S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical Statistics", 12th Edition, Sultan Chand & Sons, New Delhi (2020).
- 2. Miller, "Probability and Statistics for Engineers", 9th Edition, Freund-Hall, Prentice India Ltd. (2017).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			
Course	Designers			

S.No	Faculty Name	Designation	Department / Name of the College	Email id
1	Dr.M.Vijayarakavan	Associate Professor	Mathematics/VMKVEC	vijayarakavan@vmkvec.edu <u>.in</u>
2	Dr. A.K.Bhuvaneswari	Associate Professor	Mathematics/AVIT	bhuvaneswari@avit.ac.in

ENGINEERING SCIENCES COURSES

FOUNDATIONS OF COMPUTING AND FOUNDATIONS OF COMPUTING AND FIRST FIRST			1														
PREAMBLE This course aims to provide the fundamental concepts of Computer operations like hardware and software installation, and emphasizing principles programming languages. Studying the fundamentals database languages, commands and internet basics. PRERQUISITE – Nil COURSE OBJECTIVES 1 To provide basic knowledge of hardware components of computers and classifications. 2 To introduce and demonstrate various Operating System functions and software. Software application packages. 3 To study Principles of programming and applications of programming. 4 To learn about various Database Management Systems languages and commands used. 5 To learn basics of Internet and Web services. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. To understand the Basic knowledge on computer hardware and its functions. CO2. To get knowledge of Fundamentals of various Operating System functions and soft wares. CO3. To Understand the principles of programming and categories of programming languages. CO4. To demonstrates Database Management Systems languages and their classifications. CO5. To understands and demonstrates the Internet Basics. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO6 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S											Catego	ory	L	T	P	Cre	edit
This course aims to provide the fundamental concepts of Computer operations like hardware and software installation, and emphasizing principles programming languages. Studying the fundamentals database languages, commands and internet basics. PRERQUISITE — Nil To provide basic knowledge of hardware components of computers and classifications. 1 To provide basic knowledge of hardware components of computers and classifications. 2 To introduce and demonstrate various Operating System functions and software. Software application packages. 3 To study Principles of programming and applications of programming. 4 To learn about various Database Management Systems languages and commands used. 5 To learn basics of Internet and Web services. COULSE OUTCOMES On the successful completion of the course, students will be able to CO1. To understand the Basic knowledge on computer hardware and its functions. CO2. To get knowledge of Fundamentals of various Operating System functions and soft wares. CO3. To understand the principles of programming and categories of programming languages. CO4. To demonstrates Database Management Systems languages and their classifications. CO5. To understand and demonstrates the Internet Basics. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO6. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS03 PS03 PS04 PS05 PS04 PS05 PS05 PS05 PS05 PS05 PS05 PS05 PS05			PR	ROGRA	AMMIN	NG(TH	EORY	+ PRA	ACTIC	E)	ES		2	0	2	3	3
To provide basic knowledge of hardware components of computers and classifications. To introduce and demonstrate various Operating System functions and software. Software application packages. To study Principles of programming and applications of programming. To learn about various Database Management Systems languages and commands used. To learn basics of Internet and Web services.	This co	ourse air															
To provide basic knowledge of hardware components of computers and classifications. To introduce and demonstrate various Operating System functions and software. Software application packages. To study Principles of programming and applications of programming. To learn about various Database Management Systems languages and commands used. To learn basics of Internet and Web services. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. To understand the Basic knowledge on computer hardware and its functions. CO2. To get knowledge of Fundamentals of various Operating System functions and soft wares. CO3. To Understand the principles of programming and categories of programming Apply languages. CO4. To demonstrates Database Management Systems languages and their classifications. CO5. To understands and demonstrates the Internet Basics. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS03 PS04 PS05 PS05 PS05 PS05 PS05 PS05 PS05 PS05	PRER	QUISIT	ΓE – N	il													
To introduce and demonstrate various Operating System functions and software. Software application packages. To study Principles of programming and applications of programming. To learn about various Database Management Systems languages and commands used. To learn basics of Internet and Web services. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. To understand the Basic knowledge on computer hardware and its functions. CO2. To get knowledge of Fundamentals of various Operating System functions and soft wares. CO3. To Understand the principles of programming and categories of programming languages. CO4. To demonstrates Database Management Systems languages and their classifications. CO5. To understands and demonstrates the Internet Basics. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S S M S M - CO2 S M M M - M S M M M M	COUI	RSE O	BJEC	ΓIVES	}												
To study Principles of programming and applications of programming. To learn about various Database Management Systems languages and commands used. To learn basics of Internet and Web services. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. To understand the Basic knowledge on computer hardware and its functions. CO2. To get knowledge of Fundamentals of various Operating System functions and soft wares. CO3.To Understand the principles of programming and categories of programming languages. CO4. To demonstrates Database Management Systems languages and their classifications. CO5.To understands and demonstrates the Internet Basics. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S S M	1	To pro	ovide b	asic kno	owledge	e of har	dware c	compon	ents of	comput	ters and o	classifica	tions	•			
To learn about various Database Management Systems languages and commands used.	2	To int	roduce	and dea	monstra	ite vario	ous Ope	erating S	System	functio	ns and so	oftware. S	Softw	are a	applicati	on packa	ages.
To learn basics of Internet and Web services. COURSE OUTCOMES	3	To stu	ıdy Prir	ciples o	of progr	ammin	g and a	pplicat	ions of	progran	nming.						
COURSE OUTCOMES COUTCOMES	4	To lea	ırn aboı	ıt vario	us Data	base M	anagen	nent Sy	stems la	ınguage	es and co	mmands	used	•			
On the successful completion of the course, students will be able to CO1. To understand the Basic knowledge on computer hardware and its functions. CO2. To get knowledge of Fundamentals of various Operating System functions and soft wares. CO3.To Understand the principles of programming and categories of programming languages. CO4.To demonstrates Database Management Systems languages and their classifications. CO5.To understands and demonstrates the Internet Basics. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S S M A M CO2 S M M M - M - M	5	To lea	ırn basi	cs of In	ternet a	nd Wel	servic	es.									
CO1. To understand the Basic knowledge on computer hardware and its functions. Understand	COU	RSE O	UTCO	MES													
CO2. To get knowledge of Fundamentals of various Operating System functions and soft wares. CO3.To Understand the principles of programming and categories of programming languages. CO4.To demonstrates Database Management Systems languages and their classifications. CO5.To understands and demonstrates the Internet Basics. Apply Apply Apply Apply Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S S M S M M - CO2 S M M M - M S M M M CO3 S S S S - M M S M M M CO4 S S S S - S - S S M M M CO5 S M M M - M - M S M M M CO5 S M M M - M - M S M M M CO5 S M M M - M - M S M M M CO5 S M M M - M - M S S M M M	On the	succes	ssful co	ompleti	ion of t	he cou	rse, stu	idents	will be	able to)						
CO3.To Understand the principles of programming and categories of programming Apply	CO1. 7	To unde	rstand t	the Basi	ic know	ledge o	on comp	outer ha	ırdware	and its	function	S.	Į	Jnde	rstand		
CO4.To demonstrates		Γo get k	nowled	lge of F	undame	entals o	f variou	ıs Oper	rating S	ystem fi	unctions	and soft	Ţ	Jnde	erstand		
CO4.To demonstrates Database Management Systems languages and their classifications.			erstand	the p	rinciple	es of p	rogran	nming	and ca	tegories	s of pro	grammir	ng A	Appl	у		
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S - - - - - - - S M - CO2 S M M - M - - - - - M M - CO3 S S S - M - - - - - M M CO3 S S S - M - - - - - - - - M M M M M -<	CO4.T	o demo		es Data	abase N	/Ianage	ment S	System	s langu	iages ai	nd their		A	Appl	у		
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S -	CO5.T	o unde	rstand	s and d	emons	trates t	he Inte	rnet B	asics.				A	Appl	y		
CO1 S -	MAPI	PING V	WITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	CIFIC	C O	UTCO	MES	
CO2 S M M - M -	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO1	PSO2	PSO3
CO3 S S S - M - - - - - - - M M - M -	CO1	S	-	-	-	-	-	-	-	-	-	-	-		S	M	-
CO4 S S S - S -	CO2	S	M	M	-	M	-	-	-	-	-	-	М	[S	M	M
CO5 S M M - M S S M M	CO3	S	S	S	-	M	-	-	-	-	-	-	-		S	-	M
	CO4	CO4 S S S - S S M M											M				
S- Strong; M-Medium; L-Low	CO5	CO5 S M M - M S S M M												M			
	S- Stro	ong; M-	-Mediu	ım; L-I	Low									•			

SYLLABUS

Introduction to computers:

Characteristics of computers, Classification of Digital Computer Systems: Microcomputers, Minicomputers, Mainframes, Supercomputers. Anatomy of Computer: Introduction, Functions & Components of a Computer, Central Processing Unit, Microprocessor, Storage units, Input and output Devices. How CPU and memory works. Program execution with illustrative examples.

Lab Component- PC Assembly,

Operating System Fundamentals:

Operating Systems: Introduction, Functions of an operating System, Classification of Operating Systems, System programs, Application programs, Utilities, The Unix Operating System, Basic Unix commands, Booting,

Lab Component-, Basic unix commands

Introduction to Principles of programming

Introduction to Programming , Programming Domain : Scientific Application , Business Applications, Artificial Intelligence, Systems Programming , Web Software

Categories of Programming Languages: Machine Level Languages, Assembly Level Languages , High Level Languages ,Problem solving using Algorithms and Flowcharts

Introduction to Database Management Systems

Database, DBMS, Why Database -File system vs DBMS, Database applications, Database users, Introduction to SQL, Data types, Classification of SQL-DDL with constraints, DML, DCL, TCL Lab Component

Create: Table and column level constraints- Primary key, Foreign key, Null/ Not null, Unique, Default. Check, Alter, Drop, Insert, Update, Delete, Truncate, Select: using WHERE, AND, OR, IN, NOT IN

Internet Basics

Introduction, Features of Internet, Internet application, Services of Internet, Internet Service Providers, and Domain Name System.

Web Basics Introduction to web, web browsers, http/https, URL, HTML, CSS

Lab Component -HTML & CSS, web Browsing, Emails, Searching

TEXT BOOKS:

- 1. J. Glenn Brookshear,"Computer Science: An Overview", Addision-Wesley, Twelfth Edition, 2014 REFERENCES:
- 1. "Concepts of programming language" Concepts of Programming Languages Eleventh Edition GLOBAL Edition Robert W. Sebesta.

Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

COUR	COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Department	Mail ID								
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in								
2	Mrs.T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in								

B-BASICS OF MECHANICAL Credit Category L \mathbf{T} P **ENGINEERING** FC(ES) 2 0 0 2 Preamble This course provides a preliminary knowledge of the applications of mechanical engineering in our day to day life. Prerequisite -NIL **Course Objective** To create a fundamental base of concepts used in mechanical engineering. To develop basic skills used in handling mechanical tools and equipments. Course Outcomes: On successful completion of the course, students will be able to To relate scientific concepts for mechanical engineering applications. Understand To use practical hands on skills in handling mechanical and motorized tools and Apply CO2. equipments. Mapping with Programme Outcomes and Programme Specific Outcomes PO1 PO7 CO PO2 PO3 PO4 PO5 PO6 PO8 PO9 PO10 PO11 PO12 PSO1 PSO₂ PSO3 CO1 S L L CO₂ S L L _

S- Strong; M-Medium; L-Low

Syllabus

Introduction of Mechanical Engineering – 4 Hours

Engineering Mechanics – System of Forces, Friction and its types, Simple Harmonic Motion, Centripetal and Centrifugal force, Links, Degree of Freedom, Application in Robotics.

Basics of Thermodynamics - 4 Hours

Thermodynamic System, Laws of Thermodynamics, Thermodynamic Cycles, Fuels and Combustion – Solid, Liquid and Gaseous Fuels, Refrigerators and Air Conditioners, IC Engines, Two and Four Stroke Engines, Gas Turbine Engines.

Basics of Engineering Materials - 4 Hours

Pig Iron, Cast Iron, Wrought Iron, Heat Treatments, Steel, Stainless Steel, Non-ferrous metals and alloys, Light weight materials, High Temperature Materials, Mechanical Properties, Effect of Grain size on mechanical properties, Corrosion prevention, Materials used in aircraft structure and in ships.

Hydraulics and Fluid Mechanics - 4 Hours

Properties of Liquid, Measurement of Pressure, Equilibrium of floating bodies, Types of flows in a pipe, Bernoulli's equation, Venturimeter, Orifice Meter, Pitot Tube, Hydraulic Turbines, Wind Mills.

Workshop Technology - 4 Hours

Dr. Sanjay Singh

Professor

Hot Working, Cold Working, Casting, Welding, Safety Equipments - Gloves, Safety Glasses, Personal Protective Equipments, Mechanical Tools - Screw Driver, Hammer, File, Reamer, Chisel, Spanner, Hand Vice, Bench Vice, Hacksaw, Cutting Plier.

Text E	Books							
1	Basic Civil and Med	chanical Engineering	g, School of Mechanic	al Engineering Sciences, VMU, Salem				
Refere	ence Books							
1	Dan B Marghitu, Mechanical Engineer's Handbook, Academic Press, Auburn University, Alabama.							
2	K. Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai							
3	N R. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida							
4	T J Prabu, Basic Me	chanical Engineering	g, SCITECH Publicati	ons, Chennai				
Cours	se Designers							
			Department /					
S.No	Faculty Name	Designation	Name of the	Email id				
			College					

Mech / VMKVEC

sanjay@vmkvec.edu.in

BASICS OF CIVIL AND MECHANICALENGINEERING	Category	L	T	P	Credit
PART-ABASICSOFCIVILENGINEERING	ES	2	0	0	2
(CommontoAllBranches)	ES	2	U	U	2

PREAMBLE

The aim of the subject is to provide a fundamental knowledge of basic Civil Engineering

PREREQUISITE-NIL

COURSEOBJECTIVES

- 1 Tounderstandthebasicconceptsofsurveyingandconstructionmaterials.
- 2 Toimpart basicknowledgeaboutbuildingcomponents.

COURSEOUTCOMES

Onthesuccessfulcompletion of the course, students will be able to

CO1. Anability to apply knowledge of mathematics, science, and engineering.	Apply
CO2. Anabilitytodesignandconductexperiments, as well as to analyze and interpret data.	Apply

MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	S	M	L	-	M	S	-	-	-	-	-	-	M	-	-
CO2	S	M	L	S	M	S	-	-	M	-	-	-	-	S	-

S-Strong; M-Medium; L-Low

SYLLABUS

SURVEYINGANDCIVILENGINEERINGMATERIALS

SURVEYING:Objects—types—classification—principles—measurementsofdistances—angles—levelling—determinationofareas—illustrative examples.

CIVILENGINEERINGMATERIALS:Bricks –stones–sand –cement –concrete mix design and Quantity computation–steelsections.

BUILDINGCOMPONENTSANDSTRUCTURES:

FOUNDATIONS: Types, Safe Bearingcapacity of Soil – Requirement of good foundations.

SUPERSTRUCTURE: Brick masonry – stone masonry – beams – columns – lintels – roofing – flooring – plastering – Mechanics – Internal and external forces –Load Transformation Mechanism in Structural Elements– stress – strain – elasticity – Types of Bridges and Dams – Basics of InteriorDesignandLandscaping– water supply – sources and quality of water — Rain water harvesting — introduction to high way and rail way.

TEXTBOOKS:

- 1. "BasicCivil and Mechanical Engineering", VMU, (2017). Company Ltd., New Delhi, 2009.
- 2. "Basic Civil Engineering", S.S. Bhavikatti., New age International Publishers.
- 3. "Reinforced Concrete Structures" B.C. Punmia, Vol. 1 & 2, Laxmi Publications, Delhi, 2004.

REFERENCES:

- 1. RamamruthamS., "BasicCivilEngineering", DhanpatraiPublishingCo.(P)Ltd., 2009.
- 2. SeetharamanS., "BasicCivilEngineering", AnuradhaAgencies.
- 3. IS 10262: 2009 "Concrete Mix Proportioning Guidelines"

COURSEDESIGNERS

S. No.	NameoftheFaculty	Designation	Dept/College	MailID
1	S. Supriya	Assist.Professor	Civil/ VMKVEC	jansupriyanair@gmail.com
2	Mrs.Pa.Suriya	Asst.Professor	Civil/AVIT	suriya@avit.ac.in

			PYTH	ION P	ROGR	AMMI	NG	(CATE	GORY	L	T	P	CRE	EDIT
			(TH	EORY	+ PR A	ACTIC	E)		E	S	2	0	2		3
PREAN	MBLE	,											l.		
												grammir			
						g with a	pplicat	tion do	nain. P	ython ha	s evolv	ed on mo	re popul	lar and	d
powerfu			e progr	ammın	g tool										
PRER(NIL	QUISI	IL													
COUR	SE OI	BJECT	IVES												
						ython p									
2									•	and sets	•				
3						sing py		ontrol st	atemen	its.					
						s in pytl									
				eption	handlii	ng func	tions, f	ile con	cepts ar	nd CSV a	ind JSC	N.			
COUR															
On the s															
							dentati	on, tok	ens, inp	out and o	utput	Underst	and		
method									1 .	1D: .:		A 1			
										Diction		Apply			
	_	solutio	ns for c	comple	x progr	ams us	ing dec	ision m	iaking a	and loopi	ng	Apply.			
stateme		e funct	ion pro	orams	with a	Il the co	ncents	like la	mhda d	lecorator	s and	Apply.			
generate		ic runct	ion pro	<i>J</i> grams	with a	ii tiic cc	псерь	iike ia	moda, c	iccorator	s and	rippiy.			
CO5. C		e the e	xceptic	n hand	ling pr	ograms	, file co	oncept 1	orogran	ns and		Apply			
understa							,					11 3			
MAPP	ING V	VITH I	PROG	RAMN	ME OU	TCOM	IES A	ND PR	OGRA	MME S	PECIF	IC OUT	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO 3
CO1	S	M	M	M	M	-	-	-	-	-	-	-	M	M	M
CO2	S	M	M	M	M	-	-	-	-	-	-	-	S	M	M
CO3	M	S	S	S	M	-	-	-	-	-	-	-	M	M	M
CO4	S	S	S	S	M	-	-	-	-	-	-	-	S	S	M
CO5	S	M	M	M	M	-	-	-	-	-	-	-	S	M	M
	ng; M-	Medim	m· I _I	OTT											

SYLLABUS

1 INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

2 DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

3 CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-else-if-else-Nested if iterative control structures-while loop, for loop and range.

4 FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

5 EXCEPTION HANDLING

Exception Handling-Regular Expression-Calendars and clock files: File input/output operations-Dictionary operations-Reading and writing in structured files: CSV and JSON.

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 2. Programming With Python Book 'Himalaya Publishing House Pvt Ltd
- 3. "Dive Into Python" by Mark Pilgrim

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COUL	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Dr.V.Amirthalingam	Assistant Professor	CSE	amirthalingam@vmkvec.edu.in

ī	BASICS OF ELECTRICAL AND ELECTRONICS Category I T P Credit															
		BA	SICS	OF EL		RICAL SINEE			TRON	NICS	Categ	gory	L	Т	P (Credit
			A.]	BASIC					EERIN	NG	FC(E	(S)	2	0	0	2
	MBL											•		'	•	
	-	-						-					_		ng. The c	oncepts
	discussed herein are projected to deliver explanation on basic electrical engineering for beginners of all engineering graduates.															
PREREQUISITE – Nil																
COURSE OBJECTIVES 1. To explain the basic laws used in Electrical circuits and various types of measuring instruments																
To explain the basic laws used in Electrical circuits and various types of measuring instruments.																
	2 To explain the different components and function of electrical dc and ac machines.															
3	To understand the fundamentals of safety procedures, Earthing and Power system.															
COUI	COURSE OUTCOMES															
On the	e succe	ssful c	omple	tion of	the co	ırse, st	udents	will be	e able t	0						
CO1:	Explai	n the e	lectrica	al quan	tities a	nd basi	ic laws	of elec	etrical (enginee	ring.		Re	memb	er	
CO2:	Demor	strate	Ohm's	and F	araday	's Law							Ap	ply		
CO3:	Descri	be the	basic c	oncept	s of me	easurin	g instr	uments	S.				Un	dersta	nd	
CO4:	Explai	in the o	perati	on of e	lectrica	al macl	ninerie	s and it	s appli	cations.			Un	dersta	nd	
CO5:	Explain	n the e	lectrica	al safet	y and p	rotecti	ive dev	ices.					Un	dersta	nd	
CO6:	Compa	are the	variou	s types	electr	ical po	wer ge	neratio	n syste	ems by	applicat	ion	Λn	alyze		
				onvent												
MAPI	1			ı			1			1	I				OMES	1
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2]	PSO1	PSO2	PSO3
CO1	S	M	-	-	M	L	-	-	-	L	M	L		S	M	L
CO2	S	M	M	L	M	ı	-	-	S	M	M	L		S	L	_
CO3	S	M	M	M	M	-	-	-	-	L	M	L		S	M	L
CO4	S	M	L	L	M	L	-	-	-	L	M	L		S	L	-
CO5	S	M	L	-	M	S	-	-	-	L	L	L		-	-	-
CO6	S	M	_	_	M	L	S	L	_	L	L	L		M	L	M

S- Strong; M-Medium; L-Low

SYLLABUS

ELECTRICAL CIRCUITS AND MEASUREMENTS

Electrical quantities - Charge, Electric potential, current, power and Energy, Passive components (RLC)-Fundamental laws of electric circuits-steady solution of DC circuits - Introduction to AC circuits- Sinusoidal steady state analysis-Power and Power factor — Single phase and Three phase balanced circuits - Classification of Instruments-Operating Principles of indicating instruments.

ELECTRICAL MACHINES

Faraday's Law, Construction, Principle of operation, Basic Equation and Applications of DC & AC Generators and Motors - Single Phase Transformer, Single phase and Three phase Induction Motor.

ELECTRICAL SAFETY AND INTRODUCTION TO POWER SYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Types of Generating stations, Transmission types & Distribution system (levels of voltage and power ratings)- Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth Edition, Chand. S&Co, 2012.
- 2. Kothari.D.P and Nagrath.I. J, "Basic Electrical Engineering", Second Edition, Tata McGraw-Hill, 2009.
- 3. R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.

REFERENCE BOOKS:

1. Smarajt Ghosh, "Fundamentals of Electrical & Electronics Engineering", Second Edition, PHI Learning, 2007.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Dr. G. Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu. in
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	Category	L	Т	P	Credit							
	B. BASIC ELECTRONICS ENGINEERING	ES	2	0	0	2							
The congine transis etc. It	AMBLE course aims to impart fundamental knowledge on electronics componenting concepts. The course begins with classification of various actors. It enables the student to design small digital logics like multiplexer crafts the students to get expertise in modern communication systems. RQUISITE – Nil	tive and p	assive	comp	onents.	, diodes and							
	RSE OBJECTIVES												
1	To learn and identify various active and passive components and their v	working pri	nciples	S.									
2	To understand the number conversion systems and working Principles	of logic gate	es.										
3	To learn the digital logic principles and realize adders, multiplexer, etc.	,											
4	To understand the application-oriented concepts in the Various commun	nication sys	tems.										
COUI	RSE OUTCOMES												
On the	e successful completion of the course, students will be able to												
CO1.	Interpret working principle and application of various active and passive onic components like resistors, capacitors, inductors, diodes and transistor	e U	nderst	and									
	CO2. Construct the rectifier, Clipper, Clamper, regulator circuits and explore their operations. Apply												
	CO3. Execute number system conversions and compute several digital logic operations. Apply												
	Design adders, Multiplexer, De-Multiplexer, Encoder, Decoder circudata input.	its for A	pply										
		1											

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

application-oriented gadgets like the UHD, OLED, HDR and various communication | Understand

CO5. Expose the working principles of modern technologies in developing

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	-	-	-	L	-	1	-	M	-	-
CO2	S	M	M	M	-	-	M	-	L	-	-	L	-	M	-
CO3	S	M	M	-	-	-	-	-	L	-	-	-	S	-	-
CO4	S	M	M	M	-	-	M	-	L	-	-	L	M	-	-
CO5	S	M	-	-	-	-	-	-	L	L	1	L	S	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

systems.

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors- Intrinsic Semiconductor, Extrinsic Semiconductor, Energy band diagram- Conductor, insulator, semiconductor, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers, Voltage Regulation- Simple wave shaping circuits- Clipper, Clamper.Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Gray Code- Conversion from one to another – Logic Gates and its characteristics – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories.

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM, PCM, DM– RADAR – Satellite Communication – Mobile Communication, Optical communication, Microwave communication. LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela, "Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

Preamble

Workshop practices is fundamental to the development of any engineering product. This course is intended to expose engineering students to different types of manufacturing/ fabrication processes. It deals with machine, fitting, carpentry, foundry, smithy and welding related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution.

Prerequisite -NIL

Course Objective

- Exposure to the students with hands on experience on various basic engineering practices in Engineering.
- 2 To have a study and hands-on-exercise on plumbing and carpentry components.
- 3 To have a practice on gas welding, foundry operations and fitting

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Upon completion of this laboratory course, students will be able to fabricate components with their own hands.	Apply
CO2.	Examine the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.	Apply
CO3.	Assembling different components, they will be able to produce small devices of their interest.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO	PSO	PSO	PS											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	O3
CO1	S	M	L	L	L	-	-	-	-	-	-	-	L	-	1
CO2	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-
CO3	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

Syllabus

Course Contents

- 1. Manufacturing Methods machining and joining methods.
- 2. Fitting operations
- 3. Carpentry.
- 4. Casting.
- 5. Tin Smithy

Lectures & videos

Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods

Fitting operations & power tools

Carpentry

Metal casting

Welding (arc welding & gas welding)

Work Shop Practice

- 1. Facing, Turning, Step Turning, Drilling, Surface finish Machine Shop
- 2. L and V Fitting Fitting Shop
- 3. Single piece and Split piece pattern Foundry
- 4. Half- Lap Joint and Dove Tail Joint Carpentry
- 5. Lap Joint, Butt Joint and T Joint Welding
- 6. Open Scoop, Rectangle Tray Tin Smithy

Text B	ooks												
1	WORKSHOP/	MANUFACTU	IRIN	G PRACTICES, MANU	J AL								
Refere	nce Books												
1					toy S.K., "Elements of Workshop ers private limited, Mumbai								
2	Rao P.N., "Manu	ıfacturing Tech	nolog	gy", Vol. I and Vol. II, Ta	ta McGraw Hill House.								
3	NR. Banapurmat	h, Basic Mecha	nical	Engineering, Vikas Publ	ications, Noida.								
4	K.Venugopal, Ba	asic Mechanical	l Eng	ineering, Anuradha Publi	cations, Chennai.								
Expe	iments be performed through Virtual Labs												
1	Welding shop		http://mmcoep. vlabs.ac.in/LaserSpotWelding/Theory.html?domain= Mechanical%20Engineering&lab=Welcome%20to%2 0Microma chining%20laboratory										
2	Casting		http://fabcoep. vlabs.ac.in/exp7/Theory.html?domain=Mechanical%20Engineering&lab=Welcome%20to%20FAB%20laboratory										
Course	e Designers												
S.No	Faculty Name	Designation		Department / Name of the College	Email id								
1	T.Raja	Asso.Prof		Mech / VMKVEC	rajat@vmkvec.edu.in								
2													

Т P Category L Credit PROGRAMMING FOR PROBLEM SOLVING 3 0 0 3 ES **PREAMBLE** The course is designed to introduce basic problem solving and program design skills that are used to create computer programs. It gives engineering students an introduction to programming and developing analytical skills to use in their subsequent course work and professional development. This course focuses on problem solving, algorithm development, topdown design, modular programming, debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques. PREREOUISITE-NIL COURSEOBJECTIVES To gain basic knowledge about simple algorithms for arithmetic and logical problems. To learn how to write a program, syntax and logical errors. 2. To understand how to decompose a problem into functions and synthesize a complete program. 3. COURSEOUTCOMES On the successful completion of the course, students will be able to Understand CO1: Formulate simple algorithms for arithmetic and logical problems. Apply CO2: Test and execute the programs and correct syntax and logical errors Apply CO3: Implement conditional branching, iteration and recursion. Analze CO4: Decompose a problem into functions and synthesize a complete program. Apply CO5: Use arrays, pointers, strings and structures to formulate algorithms and programs MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES **PO7** COS PO₁ PO₂ PO₃ **PO4 PO5 PO6 PO8 PO9** PO10 PO11 **PO12 CO1** M M Μ M М М М CO₂ Μ M M M M М М **CO3** M M S M _ M M M **CO4** S M M M M M S **CO5** S M M M Μ Μ S

S-Strong; M-Medium; L-Low

SYLLABUS

UNIT – I: INTRODUCTION

Computer system: components of a computer system-computing environments-computer languages, creating and running programs, Algorithms, flowcharts- Introduction to C language: basic structure of programs, process of compiling and running program, -tokens, keywords, identifiers, constants, strings, special symbols, variables, data types-I/O statements

UNIT - II: OPERATORS, EXPRESSIONS AND CONTROL STRUCTURES

Operators and expressions: Operators- arithmetic- relational and logical- assignment operators- increment and decrement operators, bitwise and conditional operators-special operators- operator precedence and associativity- evaluation of expressions-type conversions in expressions- Control structures: Decision statements: if and switch statement- Loop control statements: while, for and do while loops- jump statements- break-continue-goto statements.

UNIT – III: ARRAYS AND FUNCTIONS

Arrays: One dimensional array-declaration and initialization of one dimensional arrays- two dimensional arrays- initialization and accessing- multidimensional arrays- Basic Algorithms: Searching- Basic Sorting Algorithms- Functions: User defined and built-in Functions- Parameter passing in functions-call by value-Passing arrays to functions-call by reference,-Recursion-Example programs, such as Finding Factorial, Fibonacci series

UNIT – IV: STRINGS AND POINTERS

Strings: Arrays of characters- variable length character strings-inputting character strings-character library functionsstring handling functions- Pointers: Pointer basics- pointer arithmetic-pointers to pointers-generic pointers-array of Pointers- functions returning pointers,-Dynamic memory allocation

UNIT – V: STRUCTURES AND FILE HANDLING

Structures and unions: Structure definition- initialization- accessing structures,-nested structures,-arrays of structuresstructures and functions- unions- typedef- enumerations.-File handling :command line arguments- File modes- basic file operations read,-write and append

TEXTBOOKS

1. Schaum's Outline of Programming with C by Byron Gottfried, McGraw-Hill

REFERENCES

- 1. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 2. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, 2006.

Course Designers:

S.No.	Name of the Faculty	Designation	Department	MailID
1.	Mrs.R.Shobana	Assistant Professor	CSE	shobana@avit.ac.in
2.	Mr.B.Sundaramurthy	Assistant Professor	CSE	sundaramurthy@vmkvec.edu.in

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LAB A. BASIC ELECTRICAL ENGINEERING Category L T P Credit FC(ES) 0 0 2 1

PREAMBLE

It is a laboratory course which familiarizes the basic electrical wiring, measurement of electrical quantities and various types of earthing methods.

PRERQUISITE – NIL

COURSE OBJECTIVES

- 1 To learn the residential wiring and various types of electrical wiring.
- 2 To measure the various electrical quantities.
- To know the necessity and types of earthing and measurement of earth resistance.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO 1: Implement the various types of electrical wiring.

Apply

CO 2: Measure the fundamental parameters of AC circuits.

Analyze

CO 3: Measure the earth resistance of various electrical machineries.

Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L		S							L	M	L	
CO2	S	M	S	S					M			M	M	L	
CO3	L	S	L		S	1				L		L	M	L	

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- **2.** Fluorescent lamp wiring.
- 3. Stair case wiring.
- **4.** Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- **5.** Measurement of energy using single phase energy meter.
- **6.** Types of wiring, Joints and Measurement of resistance to earth of an electrical equipment.

REFERENCES

1. Laboratory Reference Manual.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Dr. G. Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec .edu.in
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

T L P Category Credit ENGINEERING SKILLS PRACTICES LAB PART B - BASIC ELECTRONICS ENGINEERING ES 1 **PREAMBLE** This course is to provide a practical knowledge in Basic Electronics Engineering. It starts with familiarization of electronic components and electronic equipments. It enables the students to construct and test simple electronic projects PRERQUISITE - Nil **COURSE OBJECTIVES** To familiarize the electronic components, basic electronic equipments and soldering techniques. To study the characteristics of Diodes, BJT and FET. 2 To understand the principles of various digital logic gates. 3 To understand the concept of basic modulation techniques 4 **COURSE OUTCOMES** On the successful completion of the course, students will be able to CO1. Familiarize with the fundamentals of soldering techniques. Understand CO2. Construct experiments for PN and Zener diode characteristics also determine Apply diode forward and reverse resistance CO3. Construct clipper and clamper circuit and verify their voltage levels Apply CO4. Construct and justify operation simple voltage regulator for given Zener diode Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO5. Verify the truth tables and characteristics of logic gates (AND, OR, NOT,

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	-		-	L	-	-	-	M	-	-
CO2	S	M	M	M	-	-	M	-	L	-	-	L	-	M	-
CO3	S	M	M	-	-	-		-	L	-	-	-	S	-	-
CO4	S	M	M	M	1	1	M	1	L	1	1	L	M	1	1
CO5	S	M	-	-	1	-	-	-	L	L	1	L	S	1	L

Apply

S- Strong; M-Medium; L-Low

NAND, NOR, XOR).

Syllabus

LIST OF EXPERIMENTS

- 1. Practicing of Soldering and Desoldering.
- 2. Characteristics of PN junction Diode and find the forward and reverse resistance
- 3. Construct and Study simple clipper and clamper circuits

- 4. Characteristics of Zener diode and determine the break down voltage and diode resistance5. Construct and Study simple voltage regulator using zener diode
- 6. Verification of Logic Gates.
- 7. Find the characteristics of AND ,NOR,NOT gate
- 8. Construct and Study simple voltage regulator using zener diode.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in		
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in		
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in		
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in		

ENGINEERING GRAPHICS AND	Category	L	Т	P	Credit
DESIGN	FC(ES)	1	0	4	3

Preamble

Engineering Graphics is referred as language of engineers. An engineer needs to understand the physical geometry of any object through its orthographic or pictorial projections. The knowledge on engineering graphics is essential in proposing new product through drawings and interpreting data from existing drawings. This course deals with orthographic and pictorial projections, sectional views and development of surfaces.

Prerequisite

NIL

Course Objective

- 1 To implement the orthographic projections of points, straight lines, plane surfaces and solids.
 - 2 To construct the orthographic projections of sectioned solids and true shape of the sections.
 - 3 To develop lateral surfaces of the uncut and cut solids.
 - 4 To draw the pictorial projections (isometric and perspective) of simple solids.
 - 5 To draw the orthographic views from the given pictorial view.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Execute in the form of drawing of the orthographic projections of points,	Apply		
	straight lines, plane surfaces and solids.			
CO2.	Demonstrate in the form of drawing of the orthographic projections of sectioned	Apply		
	solids and true shape of the sections.			
CO3.	O3. Develop lateral surfaces of the solid section and cut section of solids.			
CO4.	Draw the pictorial projections (isometric and perspective) of simple solids.	Apply		
CO5.	Draw the orthographic views from the given pictorial view.	Apply		

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	S	L								L		
CO2	S	S	L	S	L								L		
CO3	S	S	L	S	L								L		
CO4	S	M	L	S	S								L		
CO5	S	S	L	S	L								L		

S- Strong; M-Medium; L-Low

Syllabus

PLANE CURVES AND DIMENSIONING

Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves. Dimensioning. Projection of points.

PROJECTION OF SOLIDS

Projection of lines, Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to any one reference plane by change of position method.

SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position by cutting planes inclined to any one reference plane and perpendicular to the other – Obtaining true shape of section.

Development of lateral surfaces of simple and truncated solids like Prisms, pyramids, cylinders and cones.

ORTHOGRAPHIC VIEWS AND ISOMETRIC VIEWS – First angle projection – layout views – Representation of Three Dimensional objects -multiple views from pictorial views of objects. Principles of isometric View – isometric scale – Principles of isometric projection – isometric scale –

Isometric projections of simple solids and truncated solids – Prisms, pyramids, cylinders, cones.

INTRODUCTION TO AUTO CAD

Introduction to Auto CAD- Basic introduction and operational instructions of various commands in AutoCAD. Limit System- Tolerance, Limits, Deviation, Actual Deviation, Upper Deviation, Lower

Deviate	Deviation, Allowance. Preparation of manual parts drawing and assembled sectional views from							
orthogi	orthographic part drawings,							
Text B	Text Books							
1	Natarajan K V, "Engineering Graphics", Tata McGraw-Hill Publishing Company Ltd. Ne							
1	Delhi.							
2	K. Venugopal and V. Prabhu Raja, "Engineering Graphics", New Age International Private							
2	Limited.							
3	K.R.Gopalakrishna"Engineering Drawing" (Vol. I & II), Subhas Publications, 2014.							
4	Bhatt-N.D"Machine Drawing"-Published by R.C.Patel- Chartstar Book Stall- Anand-							
4	India- 2003	-						
Refere	ence Books							
1	N.D. Bhat and V.M. Panc	hal, Engineering C	Graphics, Charotar F	Publishers 2013				
2	E. Finkelstein, "AutoCAI	O 2007 Bible", Wi	iley Publishing Inc.,	2007				
3	R.K. Dhawan, "A text boo	ok of Engineering	Drawing", S. Chand	d Publishers, Delhi,2010.				
4	DhananjayA.Jolhe, "Engin	neering Drawing	with an Introduction	n to AutoCAD", Tata McGraw				
4	Hill Publishing Company	Limited, 2008.						
5	G.S. Phull and H.S.Sandhu, "Engineering Graphics", Wiley Publications, 2014.							
Course	Course Designers							
S.No	Faculty Name	Designation	Dept / College	Email id				
1	Dr. S.Venkatesan	Professor	Mech / VMKVEC	venkatesan@vmkvec.edu.in				
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in				

Alternative NPTEL/SWAYAM Course:

S. No.	NPTEL Course Name	Instructor	Host Institute	Duriation
1.	Engineering Graphics and Design	Prof. Naresh Varma Datla, Prof. S. R. Kale	IIT Delhi	12 weeks
2.	Engineering Drawing	Robi, P.S.	IIT Guwahati	12 weeks
3.	Engineering Drawing and Computer Graphics	Prof. Rajaram Lakkaraju	IIT Kharagpur	12 weeks

				NGI				Ca	tegor	'y	L	T	P	Cro	edit
]	MEC	HAN	ICS			CC		3	1	0	4	4
Pream This co and dyr	urse p			basic	know	ledge	abou	t the b	ehavi	or of t	he bodi	ies whic	h are u	nder sta	atic
Prereq		Conun	.10118.												
NIL Course	Obie	ctive													
	o expla		e basic	c laws	of m	echan	ics an	nd for	ces						
	To relate the basic concepts and application of rigid bodies under equilibrium in two imension														
₂ T	o emp	loy th							ices a	nd to	find th	e Centi	oid and	d mom	ent o
_Λ Τ	Inertia using various methods in solid sections. To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics.														
										f dynai	mics of	f particl	es.		
Course	Outc	omes:	On t	he su	ccessí	ful co	mplet	tion o	f the o	course	, stude	ents wil	l be abl	le to	
CO1.	O1. Identify the engineering problems using the concept of static equilibrium										Under	rstand			
CO2.		prob		_			nder e	equilit	orium	in two	dimen	sion	Apply	7	
CO3.		dy and									nter of a		Apply	7	
CO4.	Solve	prob	lems i	involv	ing fr	riction	al pho	enome	ena.				Apply	7	
CO5.		prob ibriun		_				_	•	oncep	t of dyı	namic	Analy	ze	
Mappi	ng wit	h Pro	gram	me O	utcon	nes ai	nd Pr	ograr	nme S	Specifi	c Outo	comes			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L	L	L		L							L		
CO2	S	L	L	M		L							L		
CO3	S	М	M	M		L							M		
CO4	S	M	M	M		L							M		
CO5	S	S	S	S		L					_		S		
C Stron	σ· M.M	[edium	; L-Lo	w				I.		I	ı	I	1	ı	I.

SYLLABUS

BASICS & STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics - Lame's theorem. Parallelogram and triangular law of forces - Coplanar Forces - Resolution and Composition of forces - Equilibrium of a particle - Forces in space - Equilibrium of a particle in space - Equivalent systems of forces - Principle of transmissibility - Single equivalent force.

EQUILIBRIUM OF RIGID BODIES

Free body diagram - Types of supports and their reactions - requirements of stable equilibrium - Moments and Couples - Moment of a force about a point and about an axis - Vectorial representation of moments and couples - Scalar components of a moment - Varignon's theorem - Equilibrium of Rigid bodies in two dimension.

PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes - First moment of area the Centroid of sections - Rectangle, circle, triangle from integration - T section, I section, Angle section, Hollow section by using standard formula - second and product moments of plane area - Rectangle, triangle, circle from integration - T section, I section, Angle section, Hollow section by using standard formula - Parallel axis theorem and perpendicular axis theorem - Polar moment of inertia - Principle moments of inertia of plane areas - Mass moment of inertia.

FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS

Frictional force - Laws of Coloumb friction - simple contact friction - Rolling resistance - Belt friction. Translation and Rotation of Rigid Bodies - Velocity and acceleration - General Plane motion.

DYNAMICS OF PARTICLES

Displacement, Velocity and acceleration, their relationship - Relative motion - Curvilinear motion - Newton's law - Work Energy equation of particles - Impulse and Momentum - Impact of elastic bodies.

Text Books Beer & Johnson, Vector Mechanics for Engineers. Vol. I Statics and Vol. II 1 Dynamics, McGraw Hill International Edition, 1995. 2 Kottiswaran N, Engineering Mechanics-Statics & Dynamics, Sri Balaji Publications, 2014. 3 Meriam, Engineering Mechanics, Vol. I Statics & Vol. II Dynamics 2/e, Wiley Intl., 1998. **Reference Books** Rajasekaran.S, and Sankara Subramanian G, "Engineering Mechanics", Vikas Publishing Co. 1 New Delhi. Irving H. Sharma, Engineering Mechanics - Statics & Dynamics, III Edition, 2 Prentice Hall of India Pvt. Ltd., 1993. K.L.Kumar, Engineering Mechanics III Edition, Tata McGraw Hill Publishing Co. 3 Ltd., 1998

Course	Course Designers												
S.No	No Faculty Name Designation		Department/Name of the College	Email id									
1	J.Sathees Babu	Associate Professor	Mech / VMKVEC	satheesbabu@vmkvec.edu.in									
2	Dr. S.Arunkumar	Associate Professor	Mech / VMKVEC	arunkumar@vmkvec.edu.in									

MANUFACTURING ENGINEERING FOR PHARMACEUTICAL ENGINEERS

Category	L	Т	P	Credit	
CC	3	0	0	3	

Preamble

This course provides an introduction to manufacturing engineering for pharmaceutical engineers

Prerequisite: NIL

Course Objective

- 1 To understand the all process that involved in metal casting technology.
- 2 To impart the knowledge of various metal joining processes.
- 3 To apply the various conventional machining operations and metal forming processes.
- 4 To impart the knowledge of forming and shaping in plastics processes
- 5 To impart the knowledge of various metal forming and powder metallurgy.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	To understand the concepts of casting technology	Understand
CO2.	Apply the concepts of various welding processes.	Apply
CO3.	Enhance the application of various machining processes	Apply
CO4.	To understand the applications of various forming and shaping of plastics.	Understand
CO5.	Apply the concepts of various metal forming and powder metallurgy.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	L	M	M	-	-	-	-	-	M	M	-	-
CO2	L	S	S	M	M	M		-	-	-	-	M	M	-	-
CO3	L	S	M	M	M	M	•	-	-	-	-	M	M	-	-
CO4	L	M	S	M	M	M	-		-	-	-	M	M	-	-
CO5	M	S	S	M	M	M	-	-	-	-	-	M	M	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION AND CASTING

Casting types, procedure to makes and mould, types of core making, moulding tools, machine moulding, special moulding processes – CO2 moulding; shell moulding, investment moulding, permanent mould casting, pressuredie casting, centrifugal casting, continuous casting, casting defects.

WELDING

Classification of welding processes - Principles of Oxy-acetylene gas welding-A.C metal arc welding- Resistance welding- Submerged arc welding- tungsten inert gas welding- metal inert gas welding- plasma arc welding- thermit welding- electron beam welding- laser beam welding, and identify defects in welding process - Soldering and brazing.

MACHINING

General principles (with schematic diagrams only) of working and commonly performed operations in the following machines: Lathe, Shaper, Planer, Horizontal milling machine, Universal drilling machine, Cylindrical grinding machine, Capstan and Turret lathe. Basics of CNC machines. General principles and applications of the following processes: Abrasive jet machining, Ultrasonic machining, Electric discharge machining, Electro chemical machining, Plasma arc machining and Electron beam machining and Laser beam machining.

FORMING AND SHAPING OF PLASTICS

Types of plastics-Characteristics of the forming and shaping processes –Moulding of Thermoplastics – Working principles and typical applications of - Injection moulding–Plunger and screw machines–Blow moulding – Rotational moulding – Filmblowing – Extrusion-Typical industrial applications –Thermoforming – Processing of Thermo sets –Working principles and typical applications - Compression moulding–Transfer moulding–Bonding of Thermoplastics–Fusion and solvent methods – Induction and Ultrasonic methods.

METAL FORMING AND POWDER METALLURGY

Principles and applications of the following processes: Forging, Rolling, Extrusion, Wire drawing and Spinning, Powder metallurgy— Principal steps involved advantages, disadvantages and limitations of powder metallurgy.

TEXT BOOKS

- 1. Hajra Choudhury, "Elements of Workshop Technology", Vol. I and II, Media Promoters and Publishers Pvt., Ltd., Mumbai, 2005
- 2. Nagendra Parashar B.S. and MittalR.K., "Elements of Manufacturing Processes", Prentice-HallofIndia Private Limited, 2007

REFERENCE BOOKS

- 1. Serope Kalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials", 4/e, Pearson Education, Inc. 2007
- 2. Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001
- 3. "H.M.T. "Production Technology– Handbook", Tata McGraw-Hill, 2000.

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Durati
				on
1	2	Prof. Shantanu Bhattacharya	IIT Kanpur	12 weeks

Course	Course Designers										
S.No	Faculty Name	Designation	Department/Name of the College	Email id							
1	C.Thangavel	Associate Professor	MECH/VMKVEC	thangavel@vmkvec.edu.in							
2	M.Saravanan	Associate Professor	MECH/ VMKVEC	saravanan@vmkvec.edu.in							

MANUFACTURING ENGINEERING LAB FOR PHARMACEUTICAL ENGINEERS

Category	L	T	P	Credit
CC	0	0	4	2

Preamble

This course provides to manufacturing engineering lab for pharmaceutical engineers with a Ooperation of Lathe Special Machines like Turning, Milling Shaping and Grinding.

Prerequisite: NIL

Course Objective

- 1 To impart practice in lathe operations
- 2 To apply the practical training by using drilling machine, shaping machine operations
- To apply the practical training by using milling, planning and grinding machines

Course Outcomes: On the successful completion of the course, students will be able to

	Undergo practical skill training in lathe machine and various Lathe machining operations	Apply
CO2.	Undergo practical skill training in drilling machine, shaping machine	Apply
CO3.	Gain the of knowledge skill practice in planning and grinding machines	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	L	M	L	-	M	M		-	L	-	-
CO2	S	S	M	M	L	M	L	-	M	M	-	•	L	-	-
CO3	S	S	M	M	L	M	L	-	M	M			L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

LIST OF EXPERIMENTS

- 1. Plain turning and step turning on lathe.
- 2. Taper turning on lathe.
- 3. Thread cutting on lathe.
- 4. Drilling, reaming and tapping in a drilling machine.
- 5. Plain milling.
- 6. Making square shape job in shaping machine.
- 7. Making Cutting key ways in a slotting machine.
- 8. To Perform Grinding process using a grinding machine.

Text Books

1. Manufacturing engineering lab for pharmaceutical engineers – Lab Manual.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	T.Raja	Associate Professor	MECH/VMKVEC	rajat@vmkvec.edu.in
2	R.Jayaraman	Associate Professor	MECH/VMKVEC	jayaramanr@vmkvec.edu.in
3	C.Thangavel	Associate Professor	MECH/VMKVEC	thangavel@vmkvec.edu.in

ENGINEERING SKILLS PRACTICE LAB PART- A	Category	L	T	P	Credit
BASICCIVILENGINEERING	ES	0	0	2	1

PREAMBLE

Engineering Skills Practiceis a hands- on training practice to Mechanical, Civil and Mechatronics Engineering students. It deals with fitting, carpentry, sheet metal and related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution

PREREQUISITE

Nil

COURSEOBJECTIVES

- 1 To understand the basic concepts of building components.
- 2 To impart basic knowledge about Plumping and Carpentry works.

COURSEOUTCOMES

Onthesuccessfulcompletion of the course, students will be able to

CO1. Prepare the different types of fitting and plumbing lines.	Apply
CO2. Prepare the different types of joints using wooden material	Apply

MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110	, , , , , , , ,	11001			1 0 0 1 1 2		12110	011111			70010	OTITED		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	PS	PS
													O1	O2	O3
CO1	S	L	L	L	L	L	L	L	L	L	L	L	-	S	-
CO2	S	S	S	L	L	L	L	L	L	L	L	L	L	-	M

S-Strong; M-Medium; L-Low

SYLLABUS

Buildings:

1. Studyofplumbingandcarpentrycomponentsofresidentialandindustrial buildings, Safetyaspects.

Plumbing and Carpentry Works:

- 2. Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in householdfittings.
- $3. \quad Preparation of plumbing lines ketches for water supply and sewage works.$
- 4. Hands on Exercise on Demonstrationofplumbingrequirementsofhigh-risebuildings.

CarpentryusingPowerToolsonly:

- 5. Study of the joints in roofs, doors, windows and furniture.
- 6. Hands-on-exercise: Woodwork, joints by sawing, planning and cutting.

TEXTBOOK

1.BasiccivilengineeringLabManual byDepartment ofCivil Engineering, VMRF.

COURSEDESIGNERS

S.No	NameoftheFaculty	Designation	Nameofthe College	MailI D
1	M.Senthilkumar	Asst.Professor	Civil/ VMKVEC	senthilkumar@vmkvec.edu.in
2	Dr.D.S.Vijayan	Asst.Professor	Civil/AVIT	vijayan@avit.ac.in

ENGINEERING SKILLS PRACTICE LAB	Category	L	Т	P	Credit
B. BASIC MECHANICAL ENGINEERING		0	0	2	1

Workshop is a hands-on training practice to Mechanical Engineering students. It deals with fitting, carpentry, foundry and welding related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution.

Prerequisite -NIL

Course Objective

- 1 To perform the practice in different types of fitting processes.
- 2 To executive joints using wooden materials.
- 3 To apply in depth knowledge in metal joining processes.
- 4 To demonstrate the pattern using foundry processes

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Perform the different types of fitting using MS plate.	Apply
CO2.	Practice the different types of joints using wooden material	Apply
CO3.	Demonstrate the different types of joints in metal by Arc Welding	Apply
CO4.	Utilize the different types of green sand mould	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	1	L	-	1	1	1	1	M	-	1	1	L	-	-
CO2	S	ı	L	-	ı	ı	ı	ı	M	-	ı	ı	L	-	-
CO3	S	ı	-	-	ı	ı	ı	ı	ı	-	ı	ı	L	-	ı
CO4	S	-	L	-	-	-	-	-	M	-	-	1	L	-	-

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

Tee – Fitting

Vee – Fitting

Preparation of a mould for a single piece pattern

Preparation of a mould for a split piece pattern

Half- Lap Joint in Carpentry

Dove Tail Joint in Carpentry

Lap Joint - Welding

Butt Joint – Welding

Text Books

BASIC MECHANICAL ENGINEERING, LAB MANUAL

Reference Books

- 1 K.Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai
- 2 NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida

S.No	Faculty Name	Designation	Department / Name of the College	Email id
1	V K Krishnan	Associate Professor	Mech / VMKVEC	vkkrishnan@vmkvec.edu.in
2	S. Duraithilagar	Associate Professor	Mech / VMKVEC	sduraithilagar@vmkvec.edu.in

ENGINEERING	Category	L	T	P	Credit
MECHANICS FOR					
BIOMEDICAL ENGINEERS	CC	3	1	0	4

This course provides the basic knowledge about the behaviour of the rigid bodies and fluids which are under static and dynamic conditions.

Prerequisite: NIL

Course Objective

- 1 Be exposed to the fundamental principles of mechanics
- 2 To learn effect of force on bodies
- 3 To learn the basics of calculating the Centroid, Centre of Gravity and Mass moment of inertia
- 4 To learn basics of fluid mechanics and relate it to bio-fluids
- 5 To understand the action of friction and motion

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Identify the engineering problems using the concept of static equilibrium	Understand
CO2.	Solve problems of rigid bodies under equilibrium in two dimension	Apply
CO3.	Determine the Centroid, moment of inertia and mass moment of inertia of various sections.	Apply
CO4.	Solve problems in basics of mechanics of fluids of Newtonian and Non - Newtonian types.	Apply
CO5.	Analyze engineering systems using the concept of dynamic equilibrium	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	L	-	-	-	1		-	S	-	L
CO2	S	S	M	M	-	M	-	-	-	-	1	-	S	-	L
CO3	S	M	M	M	-	M	-	-	-	-	1	-	S	-	L
CO4	S	S	M	M	-	L	-	-	-	-	1	-	S	-	L
CO5	S	S	L	S	-	S	-	-	-	-	-	-	S	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

BASICS & STATICS OF PARTICLES

Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces — Vectorial representation of forces – Vector operations of forces -additions, subtraction, dot product, cross product – Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility.

EQUILIBRIUM OF RIGID BODIES

Free body diagram – Types of supports – Action and reaction forces – stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem – Single equivalent force – Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions.

MECHANICS OF SOLIDS

Rigid bodies and deformable solids – Tension, Compression and Shear Stresses – Deformation of rigid and non rigid bodies – Centroids and centre of mass- Centroids of lines and areas – Rectangular, circular, triangular areas by integration – Principal moments of inertia of plane areas – Principal axes of inertia-Mass moment of inertia – mass moment of inertia for prismatic, cylindrical and spherical solids from first principle.

BASICS OF MECHANICS OF FLUIDS

Fluids – density – pressure – blood pressure and gravity – buoyancy – moments of force and stability – movement in water – Newton's laws of viscosity – Definitions and simple problems on Newtonian fluid, Non-Newtonian fluid, Euler equations and Navier Stoke's equations, Viscoelasticity, laminar flow, Couette flow, turbulent flow and Hagen poiseuille equation.

DYNAMICS OF PARTICLES

Displacements, Velocity and acceleration, their relationship – Relative motion – Newton's laws of motion – Work Energy Equation – Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction.

siidin	g iriction.
Tex	t Books
1	Beer, F.P and Johnston Jr. E.R., —Vector Mechanics for Engineers (In SI Units): Statics and Dynamics, 8th Edition, Tata McGraw-Hill Publishing company, New Delhi (2004).
2	Dr. R. K. Bansal, A Text Book of Fluid Mechanics, Laxmin Publications (P) Ltd., New Delhi.
Refe	erence Books
1	Vela Murali, —Engineering Mechanics, Oxford University Press (2010).
2	Frank Bell, —Principles of Mechanics and Biomechanics, Stanley Thorne (Publishers) Ltd., 1998.
2	Lee Waite, —Biofluid Mechanics in Cardiovascular Systems, The McGraw-Hill Companies, 2006

S.No	Faculty Name	Designation	Department/Name of the College	Email id		
1	J.Sathees Babu	Associate Professor	Mech / VMKVEC	satheesbabu@vmkvec.edu.in		
2	Dr. S.Arunkumar	Associate Professor	Mech / VMKVEC	arunkumar@vmkvec.edu.in		

PROGRAM CORE COURSES

MANUFACTURING	Category	L	Т	P	Credit
PROCESSES	CC	3	0	2	4

This course provides an introduction to Basic Manufacturing Process with a focus casting, welding, forming process, Sheet metal working and plastic Engineering and also provides knowledge on the working, advantages, limitations and applications of various machining processes. Machine tools are power driven machine for making products of a given shape, size and accuracy by removing metal from the metal block

1	from the metal block	y removing
	equisite : NIL	
Cour	se Objective	
1	To identify and explain manufacturing concepts	
2	To understand the manufacturing process of conventional and special casting process	s of foundry
	technology	
3	To impart the knowledge of various types welding process in metal joining processes	S.
4	To apply fundamentals of metal cutting processes and cutting tools.	
5	To apply the knowledge of different operations on special machines and various type	s of work holding
	devices	
6	To impart the knowledge of various metal forming processes.	
7	To know the working principles of the various unconventional, conventional machini	ing operations and
	also metal forming processes	
Cour	se Outcomes: On the successful completion of the course, students will be a	able to
CO	Discuss the concept of manufacturing concepts and new technologies used in industry.	Understand
CO2	Explain the working principles of various metal casting processes and to identify the defects and interpret causes in the product of metal casting processes	Understand

CO1.	Discuss the concept of manufacturing concepts and new technologies used in industry.	Understand
CO2.	Explain the working principles of various metal casting processes and to identify the defects and interpret causes in the product of metal casting processes.	Understand
CO3.	Discuss the working principles of various metal joining processes and machines/equipments used and Select the suitable joining methods for fabrication/assembly of products.	Understand
CO4.	Understand the chip formation for different cutting forces and cutting tool life.	Understand
CO5.	Understand the working principle and operations of Shaper, Milling, Drilling and boring Machines	Understand
CO6.	Apply the concepts of various metal forming processes	Apply
CO7.	Examine the working principle of various conventional machine tools, work and unconventional manufacturing processes.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6									
CO	roi	PO2	PO3	PU4	r05	roo	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S	-	-	-	-	-	-	-	-	-	M	-	-
CO2	S	M	S	-	-	•	•	•	-	-	-	-	M	•	-
CO3	S	M	S	-	-	•	•	•	-	-	-	-	M	•	-
CO4	\mathbf{S}	L	S	L	-	-	-	-	-	-	-	M	M	-	-
CO5	S	L	S	L	-	-	-	-	-	-	-	M	M	-	-
CO6	S	L	S	L	-	-	•	-	-	-	-	M	M	•	-
CO7	S	L	S	L	-	-	-	-	-	-	-	M	M	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO MANUFACTURING

Manufacturing – Role of Manufacturing in the development of a country - classification of manufacturing processes.

CASTING

Fundamentals of metal casting – Types of patterns – sand mold making –different casting techniques – types of furnaces – Defects in castings – Testing and inspection of castings.

JOINING PROCESSES

Classification of welding processes - Principles of Oxy-acetylene gas welding-A.C metal arc welding- Resistance welding- Submerged arc welding- tungsten inert gas welding- metal inert gas welding- plasma arc welding- thermit welding- electron beam welding- laser beam welding, and identify defects in welding process - Soldering and brazing.

FUNDAMENTALS OF METAL CUTTING & CUTTING TOOLS

Basics of metal cutting: Mechanism of chip formation (orthogonal and oblique cutting)-Chip thickness ratio-Velocity ratio-Merchant circle diagram- Types of chips- Basics of cutting tools: Characteristics, Cutting tool materials, properties and applications -Tool life: Taylor's equation-Variables affecting tool life and Tool wear. Tool wear and Causes.

MACHINING PROCESSES

Introduction, Classification, working principle, operations performed: Lathe, Shaper, Planner, Horizontal milling machine, Universal drilling machine, Cylindrical grinding machine, Capstan and Turret lathe. Basics of CNC machines. Super finishing processes: Lapping, Honing, Super finishing, Polishing & Buffing.

METAL FORMING PROCESSES

Cold and hot working of metals – Bulk metal forming- Sheet metal forming- High Energy Rate Forming processes: Explosive forming- Electro hydraulic forming – Electromagnetic forming.

ADVANCED MANUFACTURING TECHNOLOGY

Need and Classification of Additive Manufacturing Technology - Product development and Materials for Additive Manufacturing Technology - Tooling - Applications.

LIST OF EXPERIMENTS

- 1. Greens and moulding process using split pattern.
- 2. Joining of two metal pieces by electric arc welding.
- 3. Make an external thread cutting operation by using centre lathe.
- 4. Make a square end from a given round bar by using shaping machine.
- 5. Make a hexagonal block from a given round stock by using plain milling machine.
- 6. Make a spur gear from the given blank by using universal milling machine.
- 7. Make an external keyway on a given round rod by using vertical milling machine.
- 8. Make an internal keyway on a given hallow specimen by using slotting machine.
- 9. Make a grinding process on a machined surface as given surface finish by using cylindrical grinding machine.
- 10. Make an internal thread cutting on a given specimen as per given dimensions by the sequence drilling, boring, reaming and tapping by using respective tools and machines.

Text Books

- 1. Fundamental of Modern Manufacturing : Mikell P.Groover
- 2. A Text Book of Production Technology (Manufacturing Processes): S. Chand.

Reference Books

- 1. SeropeKalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials", 4/e, Pearson Education, Inc. 2007.
- 2. Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001
- 3. E.PaulDegarmo, J.T.Black, and Ronald A. Konser, 'Materials and Processes in Manufacturing', 5th Edition, Prentice Hall India Ltd., 1997.
- 4. P. N. Rao, Manufacturing Technology (Volume 1) Foundry, Forging and Welding, 4th Edition, Tata McGraw Hill Education, New Delhi, 2013.
- 5. Mikell P. Groover, Fundamentals of Modern Manufacturing Materials, Processes and Systems, Publishers: Wiley India, 2012.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
1	Manufacturing Process Technology I & II	Prof. Shantanu Bhattacharya	IIT Kanpur	12 weeks

S.No	Faculty Name	Designation	Department/Name of the College	Email id		
1	R.Jayaraman	Associate Professor	MECH/VMKVEC	jayaramanr@vmkvec.edu.in		

2	C.Thangavel	Associate Professor	MECH/VMKVEC	thangavel@vmkvec.edu.in
3	M.Saravanan		MECH/AVIT	saravanan@avit.ac.in

FLUID MECHANICS AND MACHINERY CC 2 1 2 4

Preamble

The students completing this course are expected to understand the role of mechanisms and its applications.

Prerequisite: NIL

Course Objective

- 1 To learn about the application of mass and momentum conservation laws for fluid flows
- 2 To understand the kinematics of the fluid flow.
- To understand the importance of dimensional analysis
- 4 To obtain the velocity and pressure variations in various types of simple flows.
- 5 To analyze the flow in water pumps and turbines

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Explain the application of mass and momentum conservation laws for fluid flows	Understand
CO2.	Explain the application of kinematics of the fluid flow.	Apply
CO3.	Explain the importance of dimensional analysis	Apply
CO4.	Analyze about the velocity and pressure variations in various types of simple flows.	Analyze
CO5.	Analyze of flow in water pumps and turbines	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	-	-	-	-	M	M	L
CO2	S	S	M	L	•	•	•	•		-	-	-	M	M	L
CO3	S	S	M	L	•	•	•	•		-	-	-	M	M	L
CO4	\mathbf{S}	S	S	S	-	-	-	-	-	-	-	-	M	M	L
CO5	S	S	S	S	-	-	-	-	-	-	-	-	M	M	L

S- Strong; M-Medium; L-Low

SYLLABUS

BASIC CONCEPTS AND PROPERTIES

Definition of fluid, Newton's law of viscosity, Units and dimensions-Properties of fluids, mass density, specific volume, specific gravity, viscosity, compressibility and surface tension, Control volume- application of continuity equation and momentum equation, Incompressible flow, Bernoulli's equation and its applications.

KINEMATICS OF THE FLUID FLOW

Exact flow solutions in channels and ducts, Couette and Poisuielle flow, laminar flow through circular conduits and circular annuli- concept of boundary layer – measures of boundary layer thickness – Darcy Weisbach equation, friction factor, Moody's diagram.

DIMENSIONAL ANALYSIS

Need for dimensional analysis – methods of dimension analysis – Similitude – types of similitude Dimensionless parameters – application of dimensionless parameters – Model analysis.

HYDRAULIC PUMPS

Euler's equation – theory of Rotodynamic machines – various efficiencies – velocity components at entry and exit of the rotor, velocity triangles – Centrifugal pumps, working principle, work done by the impeller, performance curves – Cavitation in pumps- Reciprocating pump – working principle

HYDRAULIC TURBINES

Classification of water turbines, heads and efficiencies, velocity triangles- Axial, radial and mixed flow turbines- Pelton wheel, Francis turbine and Kaplan turbines, working principles – draft tube-Specific speed, unit quantities, performance curves for turbines – governing of turbines.

LIST OF EXPERIMENTS

- 1. Determination of the Coefficient of discharge given Orifice Meter
- 2. Determination of the Coefficient of discharge given Venturi Meter
- 3. Determination of friction factor for a given set of pipes.
- 4. Conducting experiments and drawing the characteristic curves of Centrifugal Pump/Submersible Pump
- 5. Conducting experiments and drawing the characteristic curves of Reciprocating Pump
- 6. Conducting experiments and drawing the characteristic curves of Gear Pump
- 7. Conducting experiments and drawing the characteristic curves of Jet Pump
- 8. Conducting experiments and drawing the characteristic curves of Kaplan Turbine
- 9. Study about the performance characteristics curves of Pelton wheel & Francis Turbine

Text Books

- 1. Bansal- R.K. "Fluid Mechanics and Hydraulics Machines" (5th edition)—Laxmi Publications (P) Ltd- New Delhi 2005.
- 2. Modi.P.N. & Seth.S.M., a Textbook on Fluid Mechanics, Standard Publishers Ltd.

Reference Books

- 1. White- F.M. "Fluid Mechanics"- Tata McGraw-Hill- 5th Edition- New Delhi- 2003.
- 2. Ramamurtham. S- "Fluid Mechanics and Hydraulics & Fluid Machines"-Dhanpat Rai & Sons, Delhi- 2003.

Alternative NPTEL/SWAYAM Course NPTEL /SWAYAM Course Name **Host Institution Duration** S.No **Instructor Course Designers Department/Name Designation** Email id S.No **Faculty Name** of the College 1 Mech / AVIT 2 selvababu@avit.ac.in B.SelvaBabu Assistant Professor

MECHANICS OF MACHINES Category L T P Credit CC 3 0 2 4

Preamble

The students completing this course are expected to understand the role of mechanisms and its applications.

Prerequisite: NIL

Course Objective

- 1 To Demonstrate the various types of kinematics of mechanisms.
- 2 To study the gear nomenclature and illustrate the various types of gears and gear trains
- 3 To study and construct the cam profile
- 4 To categorize the knowledge of static force analysis.
- 5 To analyze the balancing of masses and vibrations.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Explain the principles involved in mechanics of machines.	Understand
CO2.	Solve problems related to gear tooth for various applications	Apply
CO3.	Construct cams and followers for specified motion profiles.	Apply
CO4.	Analyze about the various static and dynamic forces.	Analyze
CO5.	Analyze balancing problems in rotating and reciprocating parts of machinery.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	-	-	-	-	M	M	L
CO2	S	S	M	L	•	-	-	-	•	-	-	•	M	M	L
CO3	S	S	M	L	•	-	-	-	•	-	-	•	M	M	L
CO4	S	S	S	S	-	-	-	-	-	-	-	-	M	M	L
CO5	S	S	S	S	-	-	-	-	-	-	-	-	M	M	L

S- Strong; M-Medium; L-Low

SYLLABUS

KINEMATIC OF MECHANICS

Mechanisms – Terminology and definitions – kinematics inversions of 4 bar and slide crank chain – kinematics analysis in simple mechanisms – velocity and acceleration polygons – Analytical methods.

GEARS AND GEAR TRAINS

Spur gear – law of toothed gearing – involute gearing – Interchangeable gears – Gear tooth action interference and undercutting – nonstandard teeth – gear trains – parallel axis gears trains – epicyclic gear trains – automotive transmission gear trains

KINEMATICS OF CAM

Classifications - Displacement diagrams-parabolic- Simple, harmonic and Cycloidal motions - Layout of plate cam profiles - Derivatives of Follower motion - High speed cams - circular arc and tangent cams - Standard cam motion

FORCE ANALYSIS

Applied and Constrained Forces – Free body diagrams – static Equilibrium conditions – Two, Three and four members – Static Force analysis in simple machine members – Dynamic Force Analysis – Inertia Forces and Inertia Torque – D'Alembert's principle – superposition principle – dynamic Force Analysis in simple machine members.

BALANCING AND VIBRATION

Static and Dynamic balancing – Balancing of revolving and reciprocating masses – Balancing machines-Direct and reverse crank method

Free vibrations – Equations of motion – natural Frequency – Damped Vibration –critical speed of simple shaft – Torsional vibration – Forced vibration

LIST OF EXPERIMENTS

- 1. To perform an experiment on Watt and Porter Governor to prepare performance characteristic curves and to find stability and sensitivity
- 2. To determine the position of sleeve against controlling force and speed of a Hartnell governor and to plot the characteristic curve of radius of rotation
- 3. To analyse the motion of a motorized gyroscope when the couple is applied along its spin axis and determine gyroscopic couple
- 4. Determine the Moment of Inertia by compound pendulum and tri-filar suspension.
- 5. To determine the frequency of undamped free vibration and damped forced vibration of an equivalent spring mass system.
- 6. To determine whirling speed of shaft theoretically and experimentally.

Text Books

- 1. Ambekar A.G., —Mechanism and Machine Theoryll Prentice Hall of India, New Delhi, 2007
- 2. Shigley J.E., Pennock G.R and Uicker J.J., —Theory of Machines and Mechanisms II, Oxford University Press, 2003
- 3. Khurmi.R.S. and Gupta, Theory of Machines, S.Chand @ Co., 2005.

Reference Books

- 1. Thomas Bevan, —Theory of Machines , CBS Publishers and Distributors, 1984.
- 2. Ghosh.A, and A.K.Mallick, —Theory and Machinell, Affiliated East-West Pvt. Ltd., New Delhi,
- 3. Rao.J.S. and Dukkipatti R.V. —Mechanisms and Machinesll, Wiley-Eastern Ltd., New Delhi, 1992.
- 4. Ramamurthi. V., "Mechanisms of Machine", Narosa Publishing House, 2002
- 5. Robert L.Norton, "Design of Machinery", McGraw-Hill, 2004.

Alternative NPTEL/SWAYAM Course

	S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
Ī		Kinematics of Mechanisms and Machines	Prof. A. Dasgupta	IIT Kharagpur	12 Weeks
L		Macilines			

S.No	Faculty Name	Designation	Department/Name of the College	Email id		
1	Dr.S.Venkatesan	Professor	MECH/ VMKVEC	venkatesan@vmkvec.edu.in		
2						

MECHANICAL OF MATER		Category	L	T	P	Credit
METALI	LURGY	CC	3	0	2	4

This course to imparts through knowledge on the metallic and nonmetallic materials, mechanical testing methods and deformation mechanisms in crystalline solid materials. Also the mechanical treatment process, corrosion and advanced materials pertaining to Mechanical Engineers.

Prerequisite: NIL

Course Objective

- To develop the broad knowledge of the classification, properties and application of various Engineering Materials.
- 2 To provide an understanding to students on the mechanical properties and performance of materials.
- 3 Identify the suitable mechanical treatment methods for selecting ferrous and non ferrous materials.
- 4 Develop the knowledge of the various forms of corrosion and powder metallurgy fabrication methods
- To give insight to advanced materials such as polymers, ceramics and composite and their applications.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Understand the concepts of structure properties, performance and processing related to metallurgy and materials.	Understand
CO2.	Evaulate the mechanical behaviour of materials and the effect of mechanical properties.	Apply
CO3.	Correlate the structure-property relationship in metal/alloys in as- received and heat treated conditions.	Apply
CO4.	Predict the formation of corrosion, mechanism and to prevent corrosion and powder metallurgy fabrication methods.	Apply
CO5.	Apply advanced materials such as polymers, ceramics and composites in product design.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	-	-	-	-	-	-	M	M	-	-
CO2	S	M	-	-	-	-	-	-	-	-	M	S	M	-	M
CO3	S	S	M	•	•	•	-	•		-	-	S	M	•	M
CO4	S	S	-	-	-	S	-	S	-	-	-	S	M	-	M
CO5	S	S	-	-	S	-	-	-	-	-	-	S	M	-	M

S- Strong; M-Medium; L-Low

SYLLABUS

FERROUS & NON-FERROUS MATERIALS

Classification of cast iron and steels – properties, microstructures and uses of cast irons, plain carbon, alloy steels, HSLA, stainless, tool and die steels & maraging steels. Properties, microstructures and uses of non – ferrous alloys – copper, aluminium and nickel alloys. Phase diagrams - Iron – Iron carbide equilibrium diagram.

MECHANICAL BEHAVIOR OF MATERIALS

Introduction to plastic deformation - Slip and twinning - Types of fracture - ductile fracture, brittle fracture, - Fatigue - Fatigue test, S-N curves, Creep and stress rupture fatigue - mechanism of creep. Testing of materials under tension, compression and shear loads - Hardness tests (Brinell, Vickers & Rockwell), Impact test Izod and charpy.

MATERIAL TREATMENT

Heat treatment - Overview- objectives - Annealing and types, Normalizing - Hardening and

Tempering, Austempering and martempering. Case hardening process- Carburizing- nitriding - cyniding and carbonitriding, flame and induction hardening. Hardenability - Jominy end quench test. Time Temperature Transformation (TTT) and Cooling Curve Transformation (CCT) curve.

POWDER METALLURGY AND CORROSION

Powder metallurgy—powder production, blending, compaction, sintering-applications, Introduction- forms of corrosion-pitting, intergranular, stress corrosion, corrosion fatigue, dezincification, erosion-corrosion, Crevice Corrosion, Fretting-Protection methods - PVD, CVD.

INTRODUCTION TO ADVANCED MATERIALS

Polymers – types of polymer, Properties and applications of various Engineering polymers (PP,PS, PVC, PMMA, PET,PC, PA, ABS, PI,PAI,PPO,PPS,PEEK, PTEF, Urea and phenol formaldhydes. Composites – Types- Metal Matrix Composites (MMC), Polymer Matrix Composites (PMC), Ceramic Matrix Composites (CMC) – properties,processing and applications. Ceramics – properties and applications of SiC, Al2O3, Si3N4, PSZ and SIALON

LIST OF EXPERIMENTS

- 1. Introduction to Metallographic
- 2. Preparation metallographic specimen
- 3. Identification of Ferrous specimens (Minimum 5)
- 4. Identification of Non-Ferrous specimen (Minimum 2)
- 5. Heat treatment Annealing comparation between annealed and unheat treated specimen.
- 6. Heat treatment Normalizing comparation between annealed and unheat treated specimen.

Text Books

- 1. William D Callister "Material Science and Engineering", John Wiley and Sons 2010–8thEdition.
- 2. Sydney H.Avner "Introduction to Physical Metallurgy" McGraw Hill Book Company Prentice Hall 2014- 8th Edition.
- 3. V. Raghavan, "Materials Science and Engineering", PHI, Sixth Edition

Reference Books

- 1. George E. Dieter, "Mechanical Metallurgy" TATA McGraw Hill 2013 3rd Edition
- 2. Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India
- 3. Upadhyay. G.S. and AnishUpadhyay, "Materials Science and Engineering", Viva Books Pvt. Ltd., New Delhi, 2006.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration	
1	Mechanical Behaviour of Materials	Prof. S. Shankar	IIT Madras	12 Weeks	
2	Materials Science and Engineering	Dr. Vivek Pancholi	IIT Roorkee	12 Weeks	

S.No	Faculty Name	Faculty Name Designation Department/Notice College		Email id
1	S. Arunkumar	Assistant Professor	MECH/VMKVEC	arunkumar@vmkvec.ed
				<u>u.in</u>
2	M.Thiruchirambalam	Professor	MECH/AVIT	thiru.mech@avit.ac.in

STRENGTH OF MATERIALS Category L T P Credit CC 2 1 2 4

Preamble

The students completing this course are expected to understand the role of mechanisms and its applications.

Prerequisite: NIL

Course Objective

- 1 To know the behavior of material at various loading conditions in compression and tension
- 2 Understand and analyze shear force and bending moment in various loading conditions.
- To know the phenomenon of bending of different sections and its analysis and recognize principle stresses.
- 4 To understands various columns sections and geometrical analysis.
- 5 Concepts of strain energy, torsion and numerical analysis.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Explain the behavior of material at various loading conditions in compression and tension.	Understand
CO2.	Analyze shear force and bending moment in various loading conditions.	Apply
CO3.	Analyze the phenomenon of bending of different sections and recognize principle stresses.	Analyze
CO4.	Analyze about the various columns sections and geometrical.	Analyze
CO5.	Analyze of strain energy, torsion and numerical analysis.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	•	-	-	•		-	-	-	M	M	L
CO2	S	S	M	L	-	-	-	•	-	-	-	-	M	M	L
CO3	S	S	S	S	-	-	-	•	-	-	-	-	M	M	L
CO4	S	S	S	S	-	-	-	-	-	-	-	-	M	M	L
CO5	S	S	S	S	-	-	-	-	-	-	-	-	M	M	L

S- Strong; M-Medium; L-Low

SYLLABUS

STRESSES AND STRAINS

Stress and strain due to axial force – Strain energy due to axial force –sudden load and impact load. Poisson's ratio—volumetric strain—shear stress—shear strain. Thin cylindrical and spherical shells under internal pressure. Thermal stresses. Principal stresses and planes – Mohr's circle for plane stress and plane strain. Strain gauges and rosettes.

BENDING MOMENT AND SHEAR FORCE IN BEAMS

Shear force and bending moment diagrams for cantilever, simply supported and overhanging beams under concentrated loads, uniformly distributed loads, uniformly varying loads, concentrated moments – maximum bending moment and point of contra flexure.

FLEXURE & TORSION IN BEAMS

Theory of simple bending and assumptions – flexure equation. Theory of torsion and assumptions – torsion equation – power transmitted by a shaft.

DEFLECTION OF DETERMINATE BEAMS

Governing differential equation – Macaulay's method – moment area method – application to simple problems (cantilever beams and simply supported beams only).

COLUMNS AND STRUTS

Columns – behaviour of axially loaded short and long column members – buckling load – Euler's theory – different end conditions – Rankine's formula.

LIST OF EXPERIMENTS

- 1. Direct Shear Test on Mild Steel Rod and Mild Steel Plate
- 2. Brinell Hardness Test
- 3. Izod Impact Test
- 4. Bending Test on Mild Steel
- 5. Rockwell Hardness Test
- 6. Tensile Test on Mild Steel
- 7. Compression test& Torsion test on Mild Steel

Text Books

- 1. Bedi D.S., "Strength of Materials", Khanna Publishing House, 2017.
- 2. Jindal U C, "Strength of Materials", Asian Books Pvt Ltd, New Delhi, 2007.
- 3. Rajput.R K, "Strength of Materials", S.Chand& Co Ltd, New Delhi, 1996.

Reference Books

- 1. Egor P Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 1997
- 2. Subramanian R, "Strength of Materials", Oxford University Press, Oxford Higher Education Series, Oxford, 2007
- 3. Hibbeler R.C, "Mechanics of Materials", Pearson Education, New Jersey, 2007
- 4. Bansal R.K, "Strength of Materials", Lakshmi Publications(P)Ltd, New Delhi, 2010
- 5. Ferdinand P Been, Russell Johnson, J.R. and John J Dewole, "Mechanics of Materials", Tata Mcgraw Hill Publishing Co Ltd, New Delhi, 2006

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
1	STRENGTH OF MATERIALS	PROF. SRIMAN KUMAR BHATTACHARYYA	IIT KGP	12 Weeks

S.No	Faculty Name	Designation	Department/Name of the College	Email id		
1	Dr.S.Sangeetha	Associate Professor	Mech/AVIT	sangeethas@avit.ac.in		
2						

	ENGINEERING THERMODYNAMICS	Category	L	T	P	Credit
		CC	2	1	2	4

This course provides an introduction to the basic concepts in thermodynamics, first law of thermodynamics and energy, second law, entropy, enthalpy and internal energy, ideal and real gases and non-reactive ideal gas mixtures and general thermodynamic property relations. It develops the problem solving skills in engineering problems in basic thermodynamics.

Prerequisite:

Course Objective

- To learn about work and heat interactions, and balance of energy between system and its surroundings
 - To learn about application of I law to various energy conversion devices
- 3 To evaluate the changes in properties of substances in various processes
- 4 To understand the difference between high grade and low grade energies
- 5 To understand the II law limitations on energy conversion.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	To assess the basic elements & various modes of heat transfer Used in Engineering applications.	Understand
CO2.	To solve the engineering problems using various methods of Transient heat conduction technologies	Apply
CO3.	To apply the concepts of convection systems in an engineering problem using standard values	Apply
CO4.	To choose the various concepts of radiation based on the requirements for the given problems	Apply
CO5.	To solve the engineering problems using Boiling, Condensation and heat transfer rate of heat exchangers using LMTD and NTU method	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	L	-	-	-	S	S	S	-	-	S	M	-
CO2	S	M	L	L	-	•		S	S	S	-	-	S	M	-
CO3	S	M	L	L	-	•		S	S	S	-	-	S	M	-
CO4	S	M	L	L	•		-	S	S	S	-		S	M	-
CO5	S	M	L	L	-	-	-	S	S	S	-	-	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

FUNDAMENTALS OF THERMODYNAMIC

Fundamentals - System & Control volume; Property, State & Process; Exact & Inexact differentials; Work - Thermodynamic definition of work; examples; Displacement work; Path dependence of displacement work and illustrations for simple processes; electrical, magnetic, gravitational, spring and shaft work. Temperature, Definition of thermal equilibrium and Zeroth law; Temperature scales; Various Thermometers- Definition of heat; examples of heat/work interaction in systems- First Law for Cyclic & Non-cyclic processes; Concept of total energy E; Demonstration that E is a property; Various modes of energy, Internal energy and Enthalpy.

FIRST AND SECOND LAW OF THERMODYNAMICS

First Law for Flow Processes - Derivation of general energy equation for a control volume; Steady state steady flow processes including throttling; Examples of steady flow devices; Unsteady processes; examples of steady and unsteady I law applications for system and control volume. Second law - Definitions of direct and reverse heat engines; Definitions of thermal efficiency and COP; Kelvin-Planck and Clausius statements; Definition of reversible process; Internal and external irreversibility; Carnot cycle; Absolute temperature scale

CLAUSIUS INEQUALITY, IRREVERSIBILITY AND AVAILABILITY

Clausius inequality; Definition of entropy S; Demonstration that entropy S is a property; Evaluation of S for solids, liquids, ideal gases and ideal gas mixtures undergoing various processes; Determination of s from steam tables- Principle of increase of entropy; Illustration of processes in T-s coordinates; Definition of Isentropic efficiency for compressors, turbines and nozzles- Irreversibility and Availability, Availability function for systems and Control volumes undergoing different processes, Lost work. Second law analysis for a control volume. Energy balance equation and Exergy analysis.

PURE SUBSTANCE AND GAS MIXTURES

Definition of Pure substance, Ideal Gases and ideal gas mixtures, Real gases and real gas mixtures, Compressibility charts- Properties of two phase systems - Const. temperature and Const. pressure heating of water; Definitions of saturated states; P-v-T surface; Use of steam tables and R134a tables; Saturation tables; Superheated tables; Identification of states & determination of properties, Mollier's chart

THERMODYNAMIC CYCLES AND RELATIONS

Thermodynamic cycles - Basic Rankine cycle; Basic Brayton cycle; Basic vapor compression cycle and comparison with Carnot cycle. Thermodynamic relations: Thermodynamic potentials, thermodynamic gradients, general thermodynamics relations, entropy (Tds) equations, equations for internal energy and enthalpy, equation of state, coefficient of expansion and compressibility, specific heats, Joule Thomson coefficient, Clausius –Claperyon equation, Maxwell's relations.

LIST OF EXPERIMENTS

IC Engine Valve Timing diagrams.

IC Engine Port Timing diagrams.

Determination of Flash Point and Fire Point of Various fuels / Lubricant

Determination of Viscosity of Various fuels / Lubricant

Actual P-V diagrams of IC engines.

Determination of Calorific value of liquid fuel

Text Books

- 1. Jones, J. B. and Duggan, R. E., 1996, Engineering Thermodynamics, Prentice-Hall of India
- 2. Nag, P.K, 1995, Engineering Thermodynamics, Tata McGraw-Hill Publishing Co. Ltd.

Reference Books

- 1. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, Fundamentals of Thermodynamics, John Wiley and Sons.
- 2. Moran, M. J. and Shapiro, H. N., 1999, Fundamentals of Engineering Thermodynamics, John Wiley and Sons.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
1	Basic Thermodynamics	Prof. Suman Chakraborty	IIT Kharagpur	12 weeks
Course	Designers			

S.No	Faculty Name	Designation	Department/Name	Email id
			of the College	
1	R.Anandan	Associate Professor	MECH/VMKVEC	anandan@vmkvec.edu.in
2	Dr.P. Sellamuthu	Associate Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu.in
2	C.Thiagarajan	Associate Professor	MECH/AVIT	cthiagarajan@avit.ac.in

THEDMAL ENGINEEDING	Category	L	Т	P	Credit
THERMAL ENGINEERING	CC	2	1	2	4

This course imparts understanding about the power generation using heat energy conversion and makes an attempt to be conversant with the equipment's used in the process. It helps in understanding the thermodynamic concepts, the construction and the working principles of various engineering devices

Prerequisite: Engineering Thermodynamics

Course Objective

- 1 To learn about of reacting systems and heating value of fuels
- 2 To learn about gas and vapor cycles and their first law and second law efficiencies
- 3 To understand about the properties of dry and wet air and the principles of psychrometry
- 4 To learn about gas dynamics of air flow and steam through nozzles
- To learn the about reciprocating compressors with and without intercooling and performance of steam turbines

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	To assess the basic of reacting systems and heating value of fuels	Understand
CO2.	Apply the gas and vapor cycles and their first law and second law efficiencies	Apply
CO3.	Apply the properties of dry and wet air and the principles of psychrometry	Apply
CO4.	Apply the concept of gas dynamics of air flow and steam through nozzles	Apply
CO5.	Analyze the reciprocating compressors with and without intercooling and performance of steam turbines	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	L	-	-	-	S	S	S	-	-	S	M	-
CO2	S	M	L	L	-	•		S	S	S	-	-	S	M	-
CO3	S	M	L	L	-	•	•	S	S	S			S	M	-
CO4	S	M	L	L	-		-	S	S	S	-		S	M	-
CO5	S	M	L	L	-	•	•	S	S	S	-	-	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO SOLID, LIQUID AND GASEOUS FUELS

Introduction to solid, liquid and gaseous fuels—Stoichiometry, exhaust gas analysis-First law analysis of combustion reactions- Heat calculations using enthalpy tables- Adiabatic flame temperature-Chemical equilibrium and equilibrium composition calculations using free energy.

GAS AND VAPOR CYCLES

Vapor power cycles Rankine cycle with superheat, reheat and regeneration, exergy analysis. Super-critical and ultra super-critical Rankine cycle- Gas power cycles, Air standard Otto, Diesel and Dual cycles-Air standard Brayton cycle, effect of reheat, regeneration and intercooling- Combined gas and vapor power cycles- Vapor compression refrigeration cycles, refrigerants and their properties.

PROPERTIES OF DRY AND WET AIR

Properties of dry and wet air,use of pschyrometric chart, processes involving heating/cooling and humidification/dehumidification, dew point.

COMPRESSIBLE FLOW

Basics of compressible flow. Stagnation properties, Isentropic flow of a perfect gas through a nozzle, choked flow, subsonic and supersonic flows- normal shocks- use of ideal gas tables for isentropic flow and normal shock flow- Flow of steam and refrigerant through nozzle, supersaturation-compressible flow in diffusers, efficiency of nozzle and diffuser.

RECIPROCATING COMPRESSORS AND STEAM TURBINE

Reciprocating compressors, staging of reciprocating compressors, optimal stage pressure ratio, effect of intercooling, minimum work for multistage reciprocating compressors.

Analysis of steam turbines, velocity and pressure compounding of steam turbines

LIST OF EXPERIMENTS

- 1. Load Test on a four stroke Single cylinder diesel engine.
- 2. Load Test on a four stroke twin cylinder diesel engine.
- 3. Performance and Emission test of a four stroke multi-cylinder Petrol engine.
- 4. Performance and Emission test of a four stroke multi-cylinder Diesel engine.
- 5. Morse Test on a multi-cylinder petrol engine.
- 6. Performance test of a bio-fuel on a variable compression ratio engine.

Text Books

- 1. Jones, J. B. and Duggan, R. E., 1996, Engineering Thermodynamics, Prentice-Hall of India
- 2. Nag, P.K, 1995, Engineering Thermodynamics, Tata McGraw-Hill Publishing Co. Ltd.

Reference Books

- 1. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, Fundamentals of Thermodynamics, John Wiley and Sons.
- 2. Moran, M. J. and Shapiro, H. N., 1999, Fundamentals of Engineering Thermodynamics, John Wiley and Sons.

Alternative NPTEL/SWAYAM Course - Nil

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
1	Nil			

S.No	Faculty Name	Designation	Department/Name	Email id
			of the College	
1	R.Anandan	Associate Professor	MECH/VMKVEC	anandan@vmkvec.edu.in
2	Dr.P. Sellamuthu	Associate Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu.in
3	C.Thiagarajan	Associate Professor	MECH/AVIT	cthiagarajan@avit.ac.in

DESIGNOF MACHINE	Category	L	T	P	Credit
ELEMENTS	CC	2	1	0	3

Students will be able to demonstrate the fundamentals of stress analysis, theories of failure and material science in the design of machine components. Students will be able to make proper assumptions with respect to material, factor of safety, static and dynamic loads for various machine components. Enable the students to have high ethical standards in terms of team work to be a good design engineer

Prerequisite: NIL

Course Objective

- 1 Develop an ability to apply knowledge of mechanics and materials.
- 2 Develop an ability to design various machine elements with practical constraints by applying standard design procedures.
- 3 Utilize the codes and standard design principles.
- 4 Apply Design principles and validation for critical safety analysis.
- 5 Understand the background in material failure through the study of theories of failure.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Explain the influence of steady and variable stresses in machine component design.	Understand
CO2.	Analyze machine components using theories of failure for defined load conditions	Analyze
CO3.	Apply the design principles in shafts and couplings for defined constraints.	Apply
CO4.	Apply the design principles in bolted and welded joints for defined constraints.	Apply
CO5.	Apply the design principles in mechanical springs for steady and varying load conditions	Apply
CO6.	Apply the design principles in bearing for defined constraints	Apply
CO7.	Apply the design principles in flywheel for defined constraints	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	L	-	-	-	M	L	L	-	-	S	-	-
CO2	S	S	S	M	-	-	-	M	L	L	-	-	S	-	-
CO3	S	S	S	M			-	M	L	L	-		S	•	-
CO4	S	\mathbf{S}	S	M	•	-	-	M	L	L	-		\mathbf{S}	-	-
CO5	S	S	S	M	-	-	-	M	L	L	-	-	S	-	-
CO6	S	S	S	M	-	-	-	M	L	L	-		S	-	-
CO7	S	S	S	M	-	-	-	M	L	L	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO DESIGN PROCESS WITH VARIOUS STRESS COMBINATIONS

Introduction to the design process - factor influencing machine design - Direct - Bending and torsional stress equations -Impact and shock loading-Calculation of principal stresses for various load combinations - Factor of safety-theories of failure-stress concentration -design for variable loading - Soderberg - Goodman and Gerber relations

DESIGN OF SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength – rigidity and critical speed – Design of rigid and flexible couplings.

DESIGN OF BOLTED AND WELDED JOINTS

Threaded fasteners – Design of bolted joints – Design of welded Joints for pressure vessels and structures.

DESIGN OF SPRINGS

Design of helical, leaf and torsional springs under constant loads and varying loads.

DESIGN OF BEARINGS

Design of bearings – sliding contact and rolling contact types – Design of journal bearings.

DESIGN OF FLYWHEELS

Design of flywheels involving stresses in rim and arm.

Text Books

- 1. Design of Machine Elements-V.B.Bhandari
- 2. Mechanical Engineering Design:JosephE Shigley and CharlesR.Mischke

Reference Books

- 1. Machine Design:Robert L.Norton,Pearson Education,2001
- 2. Design of Machine Elements-M.F.SPotts, T.E.Shoup, pears on Edn, 2006.
- 3. Fundamentals of Machine component Design-Robert C. Juvinall, Wiley India Pvt. Ltd, 3rd Edn, 2007.
- 4. Design Data PSG College of Technology, DPV Printers, Coimbatore, 2012.
- 5. P.C.Sharma&D.K.Aggarwal, A Text Book of Machine Design, S.K.Kataria& Sons, New Delhi,12th edition, 2012.

Alternative NPTEL/SWAYAM Course – Nil

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	-	-	-	-

S.No	Faculty Name	Designation	Department/Name of the College	Email id	
1	R.Venkatesh	Assistant Professor	MECH/VMKVEC	venkatesh@vmkvec.edu.in	
2	J. SENTHIL	Associate Professor	MECH/AVIT	jsenthil@avit.ac.in	

ENGINEERING	Category	L	T	P	Credit
METROLOGY AND MEASUREMENTS	CC	3	0	2	4

The aim of the subject is to provide basic knowledge in instrumentation and measurements. Familiarization with basic concepts and different instrumentation and measurement strategies being used in practice.

Prerequisite: NIL

Course Objective

- 1 To apply the fundamentals of basic engineering measurement system.
- 2 To understand the various instruments used for linear, angular measurement, form measurement and surface finish
- To apply the knowledge of different measuring instruments like linear, angular measurement, form measurement and surface finish
- 4 To understand the principle, concepts, applications and advancements of temperature, pressure and flow measurements
- To use information to classifications, working and processes of optical measuring instruments, also to acquire the data and store in computer

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Explain the sensitivity of the instruments by evaluating the error in measurements	Understand
CO2.	Discuss the working principle and usage of various instruments used for linear, angular measurement, form measurement and surface finish	Understand
CO3.	Demonstrate the various setups used for measuring linear, angular measurement, form measurement and surface finish	Apply
CO4.	Determine the appropriate instruments for temperature, pressure and flow measurements	Apply
CO5.	Explain the application oriented knowledge in the use of optical measuring instruments	Understand

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	-	-	-	-	-	-	-	-	L	-	-
CO2	S	S	M	L	-	-	-	-	-	-	-		L	-	-
CO3	S	L	M	L	•	•	-	•	•	-	-	•	L	•	-
CO4	S	S	M	L	-	-	-	-	-	-	-	-	L	-	-
CO5	S	M	S	L	-	-	-	-	-	-	-	•	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

BASIC PRINCIPLES & LINEAR / ANGULAR MEASUREMENT

Basic principles of measurement - Generalized measuring system - Characteristics of measuring instruments, Static and Dynamic characteristics - Precision, Accuracy, Sensitivity, Repeatability, Reproducibility, Linearity, Errors –sources of error, classification and elimination of error-Calibration. Linear and angular Measurements: Vernier – Micrometer - Slip gauges and classification - Optical flats - Limit gauges - Comparators: Mechanical - Pneumatic and Electrical types – applications. -Sine bar - optical bevel protractor - Autocollimator- Angle Decker – Taper measurements.

DISPLACEMENT, SPEED & ACCELERATION / VIBRATIONMEASUREMENT

Measurement of displacement: Theory and construction of various transducers to measure displacement - LVDT ,piezo electric, inductive, capacitance, resistance, ionization and photo electric transducers, calibration procedures.

Measurement of speed: Mechanical tachometers, electrical tachometers, strobe Objective, noncontact type of tachometer.

Measurement of acceleration and vibration: Piezoelectric Accelerometer, Seismic Accelerometer, Vibrometer.

TEMPERATURE, PRESSURE AND FLOW MEASUREMENT

Measurement of Temperature: Classification, ranges, various principles of measurement, expansion, electrical resitance, , Thermistor, Thermo couples, Pyrometers, temperature Indicators.

Measurement of pressure: Units, classification, different principles used, piston Digital pressure gauges, Manometers, bourdon, pressure gauges, bellows diaphragm gauges. Low pressure measurement, thermal conductivity gauges – ionization pressure gauges, Mcleod pressure gauge, Knudsen gauge. Calibration of pressure gauges. Measurement of level: Direct method – indirect methods– capacitative, ultrasonic, magnetic, cryogenic fuel level indicators – bubler level indicators Measurement of flow: Orifice meter, Venturi meter, Rotameter, magnetic, ultrasonic, turbine flow meter, Anemometers - hotwire anemometer, Laser Doppler anemometer (LDA).

FORCE, TORQUE, & STRAIN MEASUREMENTS

Measurement of force& torque: Load cells, Dynamometers: Eddy current dynamometer, Cantilever beams, proving rings, differential transformers.

Measurement of torque: Torsion bar dynamometer, servo controlled dynamometer, absorption dynamometers. Power Measurements.

Strain Measurements: types of stress and strain measurements – electrical strain gauge – gauge factor – method of usage of resistance strain gauge for bending compressive and tensile strains – usage for measuring torque, Strain gauge calibration.

FORM MEASUREMENTS AND OPTICAL MEASUREMENTS

Form measurements: Measurement of screw threads - thread gauges - Floating carriage micrometer-measurement of gears-tooth thickness-constant chord and base tangent method- Gleason gear testing machine – radius measurements-surface finish - Straightness - Flatness and roundness measurements. Optical measurements: Optical Micro Objective, interference micro Objective, tool makers micro Objective, profile projector, vision Systems, laser interferometer – linear and angular measurements.

LIST OF EXPERIMENTS

- 1. Angular Measurements using Bevel Protector and Sine Bar
- 2. Measurement of linear parameters using precision measuring instruments like micrometer, Vernier caliper and Vernier height gauge.
- 3. Flow Measurement using a Rotameter.
- 4. Fundamental dimension measurement of a gear using a contour projector.
- 5. Measurement of Displacement using Linear Variable Differential Transducer
- 6. Measurement of speed of Motor using Stroboscope
- 7. Measurement of cutting forces using Lathe Tool Dynamometer

Text Books

- 1. Kumar D.S., Mechanical Measurements and Control, Tata McGraw Hill.
- 2. Jain R.K., Engineering Metrology, Khanna Publishers, 1994.
- 3. GuptaS.C.- "Engineering Metrology"- Dhanpatrai Publications- 2018.
- 4. Metrology and Measurements lab Manual

Reference Books

- 1. Alan S. Morris- "The Essence of Measurement"- Prentice Hall of India- 1997
- 2. Jayal A.K- "Instrumentation and Mechanical Measurements"- Galgotia Publications 2000
- 3. Beckwith T.G- and N. Lewis Buck- "Mechanical Measurements"- Addison Wesley- 1999.
- 4. Donald D Eckman- "Industrial Instrumentation"- Wiley Eastern-1985.

Alternative NPTEL/SWAYAM Course									
S.No	NPTEL /SWAYAN	1 Course Name		Instructor	Host Institution	Duration			
1	Engineering Metrolog	ngineering Metrology			IIT Kanpur	12 Weeks			
Prof. Amandeep Singh Tr Kanpur 12 Weeks Course Designers									
S.No	Faculty Name	Designation		Department/Nam of the College	e Email id				
1	S.Duraithilagar	Associate Profes	ssor	MECH/VMKVEC	duraithilagar@vi	mkvec.edu.in			
2	R.Mahesh	Assistant Profes	sor	MECH/AVIT	mahesh@avit.a	<u>ac.in</u>			

AUTOMOTIVE	Category	L	Т	P	Credit
ENGINEERING	CC	3	0	2	4

Automotive Engineering is a blend of both practical and theories, course the students will be able to learn the layout and arrangement of principal parts of an automobile, Engine Management and Emission Control System, working of Transmission, Suspension, Steering and brake systems along with the Advance in automotive Engineering.

Prereg	uisite	:	NIL
--------	--------	---	-----

Course Objective

- 1 To impart knowledge on the constructional details and principle of operation of various Automobile components.
- 2 To analyzing the various types Engine Auxiliary and Engine management systems.
- To analyzing the various types of transmission systems for a vehicle
- 4 To analyzing the working parameters of various braking and suspension system in a Vehicle
- 5 To Analyzing the Various advance in automotive Engineering

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Recognize the various parts of the automobile and their functions and	Apply
	materials.	
CO2.	Analyzing the various types Engine Auxiliary and Engine management	Apply
	systems.	
CO3.	Analyzing the various types of transmission systems for a vehicle	Apply
CO4.	Analyzing the working parameters of various braking and suspension system in a	Apply
	vehicle	
CO5.	Analyzing the Various advance in automotive Engineering.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	-	-	-	-	-	•		S	-	-
CO2	S	L	L	L	-	-	-	-	-	-	-		S	-	-
CO3	S	M	M	M	•	•	•	•		•	-	-	S	•	-
CO4	S	M	M	M	-	-	-	-	-	-	-	-	S	-	-
CO5	S	M	M	M	-	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

VEHICLE STRUCTURE AND ENGINES

Types of automobiles vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics, IC engines –components-functions and materials, variable valve timing (VVT).

ENGINE MANAGEMENT & EMISSION CONTROL SYSTEMS

Engine auxiliary systems, electronic injection for SI and CI engines, unit injector system, rotary distributor type and common rail direct injection system, transistor based coil ignition & capacitive discharge ignition systems, turbo chargers (WGT, VGT), Engine emission control by 3-way catalytic converter system, Emission norms (Euro & BS).

TRANSMISSION SYSTEMS

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, overdrive, transfer box, fluid flywheel – propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive

STEERING, BRAKING AND SUSPENSION SYSTEMS

Steering Geometry, Types of steering Gearbox – Power Steering, Front Axle, Stub Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, ABS and Traction Control.

ADVANCES IN AUTOMOBILE ENGINEERING

Passenger comfort - Safety and security - HVAC - Seat belts - Air bags - Automotive Electronics - Electronic Control Unit (ECU). Active Suspension System (ASS) - Electronic Brake Distribution (EBD) - Electronic Stability Program (ESP) Traction Control System (TCS) - Global Positioning System (GPS) - Electric - Hybrid vehicle.

LIST OF EXPERIMENTS

- 1. Construction Mechanism of Petrol and Diesel engine (Four stroke and Two Stoke)
- 2. Construction Mechanism of Clutch Assembly
- 3. Construction Mechanism of Sliding mesh, Constant mesh and Synchromesh gear boxes
- 4. Construction Mechanism of Differential and Rear axles assembly
- 5. Construction Mechanism of Hydraulic brake, Disc brake and Air brake systems
- 6. Construction Mechanism of Suspension and Steering systems
- 7. Construction Mechanism of Hybrid and Electric vehicles

Text Books

- 1. Kirpal Singh, "Automobile Engineering Vol 1 & 2", Standard Publishers, Seventh Edition, New DelhiR.B. Gupta- "Automobile Engineering"- SatyaPrakashan.
- 2. Jain K.K. and Asthana R.B., Automobile Engineering, Tata McGraw Hill, New Delhi.
- 3. Gill P.S., "A Textbook of Automobile Engineering Vol. I, II and III", S.K.Kataria and Sons, 2ndEdition.

Reference Books

- 1. William Crouse- "Automobile Engineering Series "- McGraw-Hill
- 2. Newton and Steeds- "Motor Vehicles" ELBS
- 3. Duffy Smith- "Auto Fuel Systems"- The Good Heat Willcox Company Inc.
- 4. "Hybrid and Electric Vehicles"-CRC Press Taylor and Francis Group.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
1	Fundamentals of Automotive Systems	Prof C.S. Shankar Ram	IIT Madras	12 Weeks

S.No	Faculty Name	Designation	Department/Name of the College	Email id	
1	T. Raja	Associate Professor	MECH/VMKVEC	rajat@vmkvec.edu.in	
2	N. Shivakumar	Assistant Professor	MECH/AVIT	shivakumar@avit.ac.in	

	COMPUTER INTEGRATED MANUFACTURING	Category	L	T	P	Credit
		CC	3	0	2	4

The students completing this course are expected to understand the nature and role of computers in manufacturing. The course includes computer aided design, fundamentals of CNC machines, programming of CNC machines, group technology, computer aided process planning techniques, shop floor control and flexible manufacturing systems. It exposes the students to various current trends followed in the industries

Course Objective

- 1 Demonstrate basics of CAD/CAM/CIM concepts
- 2 To apply geometric modelling techniques and various graphics standards in CAD
- 3 Explain computer graphics and solid modelling techniques.
- 4 Demonstrate part programs and group technology techniques
- 5 Discuss latest advances in the manufacturing perspectives.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Apply design concepts.	Apply
CO2.	Utilise CAD standards for geometrical modelling.	Apply
CO3.	Develop part programs for solid models.	Apply
CO4.	Demonstrate Solid modelling techniques.	Apply
CO5.	Apply group technology concept in manufacturing product.	Apply
CO6.	Make use of FEA concept for analysis.	Apply
CO7.	Explain FMS and CIM wheel for manufacturing industry	Apply
CO8.	Develop the model for Analyzing and manufacturing structural member.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	-	-	-	-	-	-	•	L	M	-	-
CO2	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO3	S	M	M	M	-	•	-	•	-	-	-	L	M	-	-
CO4	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO5	S	M	M	M	-	•	-	-	-	-	-	L	M	-	-
CO6	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO7	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO8	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Definition and scope of CAD/CAM- Computers in industrial manufacturing, design process-Computer Aided Design (CAD)-Computer Aided Manufacturing (CAM)-Computer Integrated Manufacturing (CIM) - Introduction to Computer graphics -Raster scan graphics-Co-ordinate systems.

GRAPHICS AND COMPUTING STANDARDS

Data base for graphic modeling-transformation geometry-3D transformations —Clipping-hidden line removal-Colour-shading-Standardization in graphics- Open GL Data Exchange standards — IGES, STEP - Graphic Kernal system (GKS).

GEOMETRIC MODELLING

Geometric construction methods-Constraint based modeling- Wireframe, Surface and Solid – Parametric representation of curves, solids & surfaces.

CNC MACHINE TOOLS

Introduction to NC, CNC, DNC - Manual part Programming – Computer Assisted Part Programming – Examples using NC codes- Adaptive Control – Canned cycles and subroutines – CAD/ CAM approach to NC part programming – APT language, machining from 3D models.

ROLE OF INFORMATION SYSTEMS IN MANUFACTURING

Discrete part manufacture-information requirements of a production organization-manufacturing strategies-Integration requirement - Group technology-coding-Production flow analysis-computer part programming-CAPP implementation techniques.

INTRODUCTION TO FEA CONCEPTS

Nodes -Meshing – Pre and Post processing – Modal analysis – Stress analysis – Steady state and Transient analysis.

AUTOMATED MANUFACTURING SYSTEMS

Flexible Manufacturing systems (FMS) – the FMS concepts – transfer systems – head changing FMS – Introduction to Rapid prototyping, Knowledge Based Engineering, Virtual Reality, Augmented Reality –automated guided vehicle-Robots-automated storage and retrieval systems - computer aided quality control-CMM-Non contact inspection methods.

LIST OF EXPERIMENTS

- 1. 2D Geometry Splines
- 2. Surface Modelling –NURBS
- 3. Solid Modelling-CSG, Brep.
- 4. Preparing solid models for analysis-Neutral files
- 5. Real time component analysis-STRESS, STRAIN Analysis.
- 6. Model analysis of different structures.
- 7. Tolerance analysis of any mechanical component.
- 8. CNC Milling program involving linear motion and circular interpolation
- 9. CNC Milling program involving contour motion and canned cycles
- 10. CNC Milling program involving Pocket milling.
- 11. CNC Turning program involving turning and facing
- 12. CNC Turning program involving Step turning, Taper turning and Grooving
- 13. CNC Turning program involving Fixed/Canned cycles& Thread cutting cycles
- 14. Diagnosis and trouble shooting in CNC machine
- 15. Route sheet generation using CAM software.
- 16. Generation of CNC programming and machining using Master Cam/Edge Cam.

Text Books

- 1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated
- 2. Radhakrishnan P, Subramanyan.S. andRaju V., "CAD/CAM/CIM", New Age International (P) Ltd., New Delhi.
- 3. P.N.Rao, CAD/CAM: Principles and Applications-3rd Edition, Tata McGraw Hill, India, 2010.

Reference Books

- 1. Yoremkoren, "Computer Integrated Manufacturing System", McGraw-Hill.
- 2. Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International
- 3. David D.Bedworth, Mark R.Hendersan, Phillip M.Wolfe "Computer Integrated Design and Manufacturing", McGraw-Hill Inc.
- 4. Roger Hanman "Computer Integrated Manufacturing", Addison Wesley
- 5. Viswanathan.N, Narahari.Y "Performance Modeling& Automated Manufacturing systems" Prentice hall of indiapyt. Ltd.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
1	Complifer integrated Maniffactifring	Prof. J. Ramkumar, Prof. Amandeep Singh	IIT Kanpur	12 weeks

Course	Course Designers									
S.No	Faculty Name	Designation	Department/Name of the College	Email id						
1	L.PRABHU	Associate Professor	MECH/ AVIT	prabhu@avit.ac.in						
2	M.Saravanan	Associate Professor	MECH/VMKVEC	saravanan@vmkvec.edu.in						

DESIGN OF	Category	L	Т	P	Credit
TRANSMISSION SYSTEMS	CC	2	1	0	3

Preamble

Design of Transmission System course is concerned with design of mechanical transmission elements for engineering applications. In industries motors and turbines use energy to produce rotational mechanical motion. In order to harness this motion to perform useful work, there must be a way to transmit it to other components and machines. Three common methods of accomplishing this include gears, chain drives, and belt drives. The Mechanical Transmission Systems subject area covers these types of transmission systems, including specific applications, how each works.

Prerequisite: DESIGN OF MACHINE ELEMENTS

Cour	se Objective
1	To interpret the procedure for power transmission by belt, ropes and chain drives.
2	To design the spur and helical, bevel and worm gears.
3	To explore the importance of gear box and design of gear box.
4	To assess the design procedure for cam and clutches.
5	To assess the design procedure for brakes.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Design a suitable flat belt, V-belt, ropes and chain drive for specified loading condition by using pre-defined set of values and procedures.	Apply
CO2.	Determine the number of teeth, bending strength and wear strength for given spur gear, helical, bevel gear and worm gear pair by using pre-defined set of values and procedures.	Apply
CO3.	Design the gearbox and gear shaft dimensions for given speed conditions by using pre-defined set of values and procedures.	Analyze
CO4.	Develop the cam profile for various types of followers, single plate clutch and multiple plate clutch for given specified loading conditions.	Apply
CO5.	Design of brakes by using pre-defined set of values and procedures.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

11	0		0												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S	M	-	-	-	-	-	-	-	-	S	-	-
CO2	S	M	S	M	-	•	-	-	-	-	-		S	-	-
CO3	M	S	S	M	-	•	-	-	•	-	-	•	S	-	-
CO4	S	M	S	M	-	-	-	-	-	-	-	-	S	-	-
CO5	S	M	S	M	-	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

DESIGN OF FLEXIBLE DRIVES

Types and configuration of belt drive, slip, initial tension, centrifugal tension, selection of flat belt drive, Selection of V-belt drives, problems-based on basic equations. Types of chain, factor of safety, selection of chain drives. Design of Sprockets.

DESIGN OF GEARS

Gear nomenclature, Spur gears: Stresses induced in gears, gear tooth failure, Lewis bending equations, Calculation of appropriate safety factors and power rating, force analysis, Design of spur gears, helical, bevel and worm gears.

DESIGN OF GEAR BOXES

Geometric progression — Standard step ratio — Ray diagram, kinematics layout -Design of sliding mesh gear box — Design of multi speed gear box for machine tool applications — Constant mesh gear box — Speed reducer unit.

DESIGN OF CAMS, CLUTCHES

Cam and follower Design: Types-pressure angle and under cutting base circle determination-forces and surface stresses. Design of plate clutches –axial clutches-cone clutches-internal expanding rim

clutches- Electromagnetic clutches.

DESIGN OF BRAKES

Band and Block brakes — external shoe brakes — Internal expanding shoe brake.

Text Books

- 1. Joseoh Edward Shigley, Charles R Misucke, Mechanical Engineering Design, Tata Mc Graw Hill.
- 2. Prabhu. T.J. "Design of Transmission Elements"- Mani Offset- Chennai.
- 3. V.B. Bhandari, "Design of Machine Elements", Tata McGraw Hill.

Reference Books

- 1. Md.Jalaludeen- Machine Design- Anuradha Publicatiions, Chennai
- 2. Maitra G.M. Prasad L.V. "Hand book of Mechanical Design"- II Edition- Tata McGraw-
- 3. Sundarajamoorthy T.V. and Shanmugam. N, "Machine Design", Anuradha Publications
- 4. Design Data, PSG College of Technology, Coimbatore.

Alternative NPTEL/SWAYAM Course

AILEIII		A I AIVI Course				
S.No	NPTEL/SWAY	AM Course Name	Instructor	Host Institution Duration		
Course	Designers					
S.No	Faculty Name	Designation	Department/Name of the College	Email id		
1	J Satheesbabu	Associate Professor	MECH/VMKVEC	satheesbabu@vm	kvec.edu.in	
2	S.Kalyanakumar	Assistant Professor	MECH/AVIT	kalyanakumar @	avit.ac.in	

HEAT TRANSFER	Category	L	Т	P	Credit
HEAT TRANSFER	CC	2	1	2	4

Preamble

The purpose of this subject is to been able students understood different principles of heat transfer and its Extensive Engineering applications.

Prerequisite: ENGINEERING THERMODYNAMICS

Course Objective

- 1 To enable students understand their conduction mechanism in steady state emphasizing on Application in engineering.
- To enable students understand their conduction mechanism in unsteady state emphasizing on application in engineering.
- 3 To categorize various types of convection and its application.
- 4 To assess various concepts of radiation and its Applications.
- 5 To enable students to understand Boiling, Condensation and Various types of Heat Exchangers.
- 6 To Enable students to Understand Various Heat transfer Calculations by conducting Experiments.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	To assess the basic elements & various modes of heat transfer Used in Engineering applications.	Understand
CO2.	To solve the engineering problems using various methods of Transient heat conduction technologies	Apply
CO3.	To apply the concepts of convection systems in an engineering problem using standard values	Apply
CO4.	To choose the various concepts of radiation based on the requirements for the given problems	Apply
CO5.	To solve the engineering problems using Boiling, Condensation and heat transfer rate of heat exchangers using LMTD and NTU method	Apply
CO6.	To Conduct experiments, interpret the data and analyze the heat transfer problems	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	L	-	-	-	S	S	S	-	-	S	M	-
CO2	S	M	L	L		•		S	S	S	-	•	S	M	-
CO3	S	M	L	L	•	•	•	S	S	S	•	•	S	M	-
CO4	\mathbf{S}	M	L	L	•	-	-	S	S	S	-		S	M	-
CO5	S	M	L	L	-	-	-	S	S	S	-	-	S	M	-
CO6	S	M	L	L	•	•	-	S	S	S	-	-	S	M	-
CO7	S	M	L	L	•	•	-	S	S	S	-	-	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO HEAT TRANSFER AND STEADY STATE CONDUCTION

Heat transfer fundamentals; Basic heat transfer mechanisms (conduction, convection and radiation), Conduction -Introduction -Fourier law of conduction- General equation in Cartesian coordinates - One dimensional steady state conduction across Large plane wall, Long cylinder and Sphere- Composite wall – Composite cylinder – Composite sphere, Overall heat transfer coefficients, Critical Radius of insulation, Variable thermal conductivity, conduction with Heat generation, - Fins or extended

surfaces- Pin fins, annular fins, longitudinal fins, fins efficiency and fins effectiveness- Problems.

TRANSIENT HEAT CONDUCTION

Introduction – Lumped system analysis, semi – infinite solids. Transient Heat Conduction in Large Plane Walls, Long cylinders and Spheres. Significance of Biot and Fourier numbers, Transient heat transfer analysis of an infinite slab with specified temperature and connective boundary conditions. - Refrigeration and Freezing of Foods- Problems.

Use of Grover & Heisler charts for solving problems of infinite slabs, cylinders, spheres.

CONVECTION

Introduction – Physical Mechanism on Convection, Classification of Fluid Flows, Significance of non-dimensional numbers, Velocity Boundary Layer, Thermal Boundary Layer, Laminar and Turbulent Flows. External Forced convection – Flow over a Flat plate, cylinder, sphere and Tube Banks. Internal Forced Convection - Flow through pipes – annular spaces and noncircular conducts. Natural convection from vertical, inclined and horizontal surfaces.

RADIATION

Introduction – Thermal Radiation – Black body Radiation – Radiation Intensity- Radioactive Properties – Atmospheric and Solar Radiation – View Factor- Simple Problems- Black surfaces and Grey Surfaces – Net Radiation – Heat Transfer in Two and Three Surface Enclosures- Radiation Shield – Problems – Radiation Exchange with Emitting and Absorbing Gases.

BOILING, CONDENSATION AND HEAT EXCHANGERS

Boiling — Types of Boiling- Problems. Condensation — Types of Condensation- Problems.Heat Exchangers- Types- Overall heat transfer co-efficient- Analysis of Heat Exchangers — LMTD method — Effectiveness - NTU Method — Selection of Heat Exchangers — Problems.

LIST OF EXPERIMENTS

- 1. Determination of Thermal conductivity (Insulating Powder)
- 2.Determination of Emissivity
- 3. Determination of Heat transfer co-efficient through Forced Convection
- 4. Determination of Heat transfer co-efficient through Natural Convection
- 5. Determination of Heat transfer co-efficient of Pin-Fin Apparatus.
- 6.Determination of Stefan Boltzmann's Constant
- 7. Determination of Thermal conductivity (Two Slabs Guarded Hot Plate Method)
- 8. Determination of Effectiveness of a Heat Exchanger By Parallel & Counter Flow
- 9. Determination of Thermal conductivity of the Composite wall.

Text Books

- 1. YUNUS A CENGEL "Heat Transfer"-Tata Mc Graw Hill-New Delhi.
- 2. KOTHANDARAMAN C.P "Fundamentals of Heat and Mass Transfer" NewAge International.
- 3. SACHDEV R C "Fundamentals of Engineering Heat and Mass Transfer" New Age International

Reference Books

- 1. OZISIKM.N-"Heat Transfer"-Tata Mc Graw-Hill Book Co.
- 2. NAGP.K-"Heat Transfer"-Tata Mc Graw-Hill-New Delhi.
- 3. HOLMANJ.P"Heat and Mass Transfer" Tata Mc Graw-Hill.
- 4. INCROPRA and DEWITE, Heat Transfer–John Wiley.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course	Instructor	Host Institution	Duration
	Name			

1	Heat Transfer		Prof. Sunando DasGupta			Kharagpur	12 weeks		
Course Designers									
S.No	Faculty Name	Designation	on	Department/Na of the College	me	Email id			
1	R.Anandan	Associate F	Professor	MECH/VMKVEO		anandan@vm	kvec.edu.in		
2	C.Thiagarajan	Associate F	Professor	MECH/AVIT		cthiagarajan@	@avit.ac.in		

Preamble

This course provides to learn the basic concepts of finite element analysis (FEA) of solids, structures, fluids and its application in engineering.

Prerequisite: NIL

Course Objective

- 1 Understand finite element analysis fundamentals and formulations
 - 2 Study the basics of element properties natural, Triangular & rectangular
- 3 Formulation of finite element methods for Two and three-dimensional solids
- 4 Formulate the truss, beam and frame problems
- 5 Formulation of finite element methods for the analysis of heat transfer in solids

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	To understand the basic concepts of finite element analysis, node and node numbering methods.	Understand
CO2.	Derive the finite element equations for different mechanical elements. Natural, Triangular & rectangular elements	Apply
CO3.	Formulate and solve problems in 2-D& 3-D structural systemsof solids and their structures.	Apply
CO4.	Identify the application and characteristics of FEA elements such as bars, beams, plane and isoparametric elements	Apply
CO5.	To be able to conduct engineering analysis of basic heat conduction, structural mechanics problems use finite element methods.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO2	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO3	S	M	M	M	•	•	•	•	•	-	-	L	M	•	-
CO4	S	M	M	M		-	-		•	-	-	L	M	-	-
CO5	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO6	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO7	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO8	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO FINITE ELEMENT ANALYSIS

Introduction, Basic Concepts of Finite Element Analysis, Introduction to Elasticity, Steps in Finite Element Analysis. Finite Element Formulation Techniques, Virtual Work and Variational Principle, Galerkin Method, Finite Element Method: Displacement Approach, Stiffness Matrix and Boundary Conditions.

ELEMENT PROPERTIES

Natural Coordinates, Triangular Elements, Rectangular Elements, Lagrange and Serendipity Elements. Solid Elements, Isoparametric Formulation, Stiffness Matrix of Isoparametric Elements, Numerical Integration – one dimensional, Numerical Integration: Two and Three Dimensional, Worked out Examples

FEM FOR TWO- AND THREE-DIMENSIONAL SOLIDS

Constant Strain Triangle, Linear Strain Triangle, Rectangular Elements, Numerical Evaluation of Element Stiffness, Computation of Stresses, Geometric Nonlinearity and Static Condensation, Axisymmetric Element, Finite Element Formulation of Axisymmetric Element, Finite Element Formulation for 3 Dimensional Elements, Worked out Examples

ANALYSIS OF FRAME STRUCTURES

Stiffness of Truss Members, Analysis of Truss, Stiffness of Beam Members, Finite Element Analysis of Continuous Beam, Plane Frame Analysis, Analysis of Grid and Space Frame.

STEADY STATE HEAT TRANSFER ANALYSIS

Basic equations of heat transfer, Axially loaded bar- Heat flow in a bar, Structure of FEA software package. Rate equation: conduction, convection, radiation, energy generated in solid

LIST OF EXPERIMENTS

- 1. Study of analysis and its benefits
- 2. Stress analysis of cantilever and simply supported beam
- 3. Application of distributed loads
- 4. Nonlinear analysis of cantilever beam
- 5. Buckling analysis
- 6. Stress analysis of axis-symmetry vessels
- 7. Static analysis of two-dimensional truss
- 8. Transient thermal conduction
- 9. Conductive heat transfer analysis
- 10. Plane stress bracket
- 11. Modal analysis of simply supported beam
- 12. Harmonic analysis of a cantilever beam

Text Books

- 1. Hutton, D.V., "Fundamentals of Finite Element Analysis", McGraw Hill, International Edition, 2004.
- 2. Segerlind, L.J., "Applied Finite Element Analysis", John Wiley & Sons, 1984.

Reference Books

- 1. Chandrupatla, T.R., Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice HallofIndia, 2002.
- 2. Zienkiewicz, O.C., "Finite Elements and Approximation", Dover International, 2006.
- 3. Cook R.D., Malkus, D.S., Plesha, M.E., Witt, R.J., "Concepts and Applications of Finite Element Analysis", 4thEdition, John Wiley & Sons, 2001.
- 4. H. C. Martin and G. F. Carey, Introduction to Finite Element Analysis Theory and Application New York, McGraw-Hill

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
1	Introduction to Finite Element Analysis	Prof.Nachiketa Tiwari,	IIT Karagpur	12 weeks

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.S.Prakash	Assistant Professor Gr II	MECH/ AVIT	prakash@avit.ac.in
2	J.Santhos	Assistant Professor	MECH/VMKVEC	santhos@vmkvec.edu.in

PROGRAM SPECIFIC ELECTIVE COURSES

B.E/B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII DETAILS OF ELECTIVE COURSES FOR DEGREE WITH SPECIALISATION

(i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE) - CREDITS (15)

SPECIALISATION - 3D PRINTING AND DESIGN

S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	С	PREREQUISITE
1		CAD for Additive Manufacturing	MECHANICAL	EC - SE	3	0	0	3	NIL
2		Powder Metallurgy	MECHANICAL	EC - SE	3	0	0	3	NIL
3		Additive Manufacturing in Medical applications	MECHANICAL	EC - SE	3	0	0	3	NIL
4		Rapid Tooling and Industrial Applications	MECHANICAL	EC - SE	3	0	0	3	NIL
5		Polymer Engineering	MECHANICAL	EC - SE	3	0	0	3	NIL
6		3D Printing and Design	MECHANICAL	EC - SE	3	0	0	3	NIL
7		Advanced 3D Printing Lab	MECHANICAL	EC - SE	0	0	4	2	NIL
8		Additive Manufacturing Machines and systems	MECHANICAL	EC - SE	3	0	0	3	NIL
9		Prototyping Methods	MECHANICAL	EC - SE	3	0	0	3	NIL
10		Theory of 3D Printing	MECHANICAL	EC - SE	3	0	0	3	NIL

	CAD	FOR	ADI	OITIV	Æ			Cat	egor	L	ı	Т	P	Cre	edit
		N	IAN	J FA (CTUR	ING		EC	(SE)	3		0	0		3
Prear		n add	itive l				_	ed to i	mpart	knowl	edge a	and sk	ills rela	ited to (CAD and its
	equisit se Ob														
1	To dis	cuss t	he ba	sic co	ncep	ts and	techn	iques r	elated	to CA	D and	its ap	plicatio	n in AN	1
2	То сог	nstruc	t a CA	AD m	odel	using	curves	S							
3	To Develop a CAD model using surfaces														
4	Γο construct a CAD using solids														
5	To identify the various data exchange formats and CAD applications														
Cour	se Ou	tcome	es: O	n the	succ	essful	comp	letion	of the	e cour	se, stu	dents	will be	e able t	0
CO1.	Den	onstr	ate th	e vari	ous d	esign	using	CAD				1	Unders	tand	
CO2.	Dev	elop (CAD I	Mode	l usin	g diff	erent f	orms c	of curv	es		,	Apply		
CO3.	Dev	elop (CAD I	Mode	l usin	g diff	erent f	orms c	of surf	aces			Apply		
CO4.	Dev	elop (CAD I	Mode	l usin	g diff	erent s	solid m	odelir	ng tech	niques		Apply		
CO5.		e to id icatio		the v	ariou	s CA	D excl	nange f	ormat	s and (CAD		Apply		
Mapp	oing w	ith P	rogra	mme	Out	come	s and	Progr	amme	Spec	ific O	utcon	ies		
СО	PO1	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
		2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	M	L	- M	-	- T	-	-	-	-	-	-	-	M	-	-
CO2	M	S	M	-	L	-	-	-		-	-	-	S	-	-
CO3	S	M	İ	-	L	1	_	ı	_	-	-	-	M	-	L
CO4	L	S	-	-	L	-	-	-	-	-	-	-	S	-	L
CO5	S	M	L	M	-	L	-	-	-	-	-	-	S	-	M-

SYLLABUS

2D & 3D Transformations of geometry: (8 Hrs.)

Translations, Scaling, Reflection, Rotation, Homogeneous representation of transformation, Concatenation of transformations, Perspective, Axonometric projections, Orthographic and

Design of Curves: (9 Hrs.)

Analytic Curves, PC curve, Ferguson, Composite Ferguson, curve Trimming and Blending, Bezier segments, de Casteljau's algorithm, Bernstein polynomials, Bezier- subdivision, Degree elevation, Composite Bezier, Splines, Polynomial Splines, B-spline basis functions, Properties of basic functions, Knot Vector generation, NURBS.

Design of Surfaces: (8 Hrs.)

Differential geometry, Parametric representation, Curves on surface, Classification of points, Curvatures, Developable surfaces, Surfaces of revolution, Intersection of surfaces, Surface modeling, 16-point form, Coons patch, B-spline surfaces.

Design of Solids: (8 Hrs.)

Solid entities, Boolean operations, B-rep of Solid Modeling, CSG approach of solid modeling, Advanced modeling methods.

Data Exchange Formats and CAD Applications: (12 Hrs.)

Data exchange formats, reverse engineering, modeling with point cloud data, Rapid prototyping,3D Scanning and Digitizing Devices, CAD Model Construction from Point Clouds, Data handling & Reduction Methods, Tessellated Models, STL File Problems, STL File Manipulation and Repair Algorithms Part orientation and support generation, Slicing Algorithms, Tool path generation, Multimaterial representation in AM

Text Books

1	Ibrahim Zeid "CAD/CAM Theory and Practice" TMH.
2	Anupam Saxena, Birendra Sahay, "Computer Aided Engineering Design", Springer, 2005.
Refer	ence Books
1	Michael E. Mortenson, "Geometric Modeling", Wiley, NY, 1997.
2	Ian Gibson, "Software Solutions for Rapid Prototyping", Professional Engineering Publishing Limited, UK, 2002.
3	Ali K. Kamrani and Emad Abouel Nasr, "Engineering Design and Rapid Prototyping", Springer, 2010.
Cours	se Designers

S.No	Faculty Name	Designation	Department/Na me of the	Email id
1	L.Prabhu	Associate Professor	Mech / AVIT	prabhu@avit.ac.in
			Mech / VMKVEC	

			PO	WDE	R M	ETAI	LLUR	GY		Category		T	P	Cred	lit
]	EC(SE)	3	0	0	3	
Prear This c metho		provid	des ba	asic kr s are i	nowle nclud	dge in led in	n vario	ous teo	chniqu	ues in Po	wder	Meta	allurgy.	The diff	eren
	auisit														
	se Ob														
1	Classi	fy the	diffe	rent p	owde	rs and	the p	repara	ition t	echnique	es				
2	Perfor	m the	chara	acteriz	ation	of dif	ferent	powe	ders						
3	Expla	in the	differ	rent po	owder	shapi	ing ted	chniqu	ies						
4	Expla	in the	sinter	ring pi	ocess	ses									
5	Apply	the te	chnic	ques fo	or the	requi	red ap	plicat	ions						
									of the	e course	, stud	lents	will be a		
CO1	Clas	ssify p	owde	r prep	aratic	n tech	ınique	es						Under	stanc
CO2		tify th												Under	
CO3		erenti: lern co					nal po	wder	comp	action a	nd			Under	stand
CO4	Exp	lain th	e me	chanis	m of	sinter	ing th	eory a	and te	chniques				Under	stand
CO5	App	ly pov	vder 1	metall	urgica	al tech	nique	s for	mecha	anical co	mpor	nents		Apply	
	ing x	ith Di	ogra	mmo	Oute	omos	and I	Progr	amm	e Specifi	c Ou	teom	06		
	PO	PO	PO	PO	PO	PO	PO	PO	PO		PO	PO	PSO	PSO	PSC
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	M	M		M		M					_	-	M		-
CO1		C		S		M						-	M	_	_
CO1	M	S			1								S		
	IVI	S		M		L						-	3	-	-
CO2	M	S				L								-	-
CO2	M M L	3		M M M		L						_	S	-	L

INTRODUCTION (9 Hrs.)

General Concepts: Introduction and History of Powder Metallurgy (PM), Present and Future Trends of PM- Powder Production Techniques: Different Mechanical and Chemical methods, Atomization of Powder, other emerging processes, Performance Evaluation of different Processes, Design & Selection of Process.

CHARACTERISATION (9 Hrs.)

Characterisation Techniques: Particle Size & Shape Distribution, Electron Microscopy of Powder, Interparticle Friction, Compressionability, Powder Structure, Chemical Characterization

POWDER SHAPING (9 Hrs.)

Powder Shaping: Particle Packing Modifications, Lubricants & Binders, Powder Compaction & Process Variables, Pressure & Density Distribution during Compaction, Isostatic Pressing, Injection Molding, Powder Extrusion, Slip Casting, Tape Casting, Analysis of Defects of Powder Compact, Laser Engineering Net Shaping (LENS), 3D

SINTERING (9 Hrs.)

Sintering: Theory of Sintering, Sintering of Single & Mixed Phase Powder, Liquid Phase Sintering, Sintering Variables, Modern Sintering Techniques, Physical & Mechanical Properties Evaluation, Structure-Property Correlation Study, Modern Sintering techniques, Defects Analysis of Sintered Components

APPLICATIONS (9 Hrs.)

Application of Powder Metallurgy: Filters, Tungsten Filaments, Self-Lubricating Bearings, Porous Materials, Biomaterials etc.

Text Books

- P. C. Angelo and R. Subramanian: Powder Metallurgy- Science, Technology and Applications, PHI, New Delhi, 2008.
- 2 ASM Hand Book, vol. 7: Powder Metallurgy, ASM International.

Reference Books

- 1 Powder Metallurgy Technology, Cambridge International Science Publishing, 2002.
- J. S. Hirschhorn: Introduction to Powder Metallurgy, American Powder Metallurgy Institute, Princeton, NJ, 1976

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	L.PRABHU`	Associate	Mech / AVIT	prabhu@avit.ac.in
1		Professor		
	J.SENTHIL	Associate	Mech / AVIT	jsenthil@avit.ac.in
2		Professor		

	ADDI	TIVI	Е МА	NUF	ACT	URIN	IG IN	Ca	ategory	y	L	T	P	Cred	it
		M	EDIC	CAL	APP	LICA	TIONS	E	C(SE)		3	0	0		3
	mble ve man	ufactu	ıring i				_	l to in	mpart l	know	ledge	and	discuss a	about th	e role
	equisit														
Cour	se Ob	jectiv	'e												
1	To dis	cuss 1	ole of	f addi	tive n	nanuf	acturing	g in n	nedical	appl	icatio	ns			
2	To un	dersta	and th	ne pro	ocedu	re in	volved	in 3E	O data	capti	ure				
3	To ide	ntify	the so	cope (of bio	mode	eling an	d virt	ual mo	dels i	in me	dicine)		
4	To ide	ntify	vario	ous b	iomat	terial	s and it	s app	licatio	ons					
5	To dev	velop	the b	ioimp	olants	and n	nedical	devic	es						
Cour	se Ou	tcome	es: O	n the	succ	essful	compl	etion	of the	cou	rse, s	tuder	ts will k	e able	to
CO1.		nonstr icatio		e var	ious a	dditiv	e manu	factui	ring in	medi	cal	Ur	derstand		
CO2.		Apply the procedure involved in 3D data capture and processing Apply													
CO3.	App	ly var	ious v	/irtua	l mod	el and	l bio mo	delin	g in m	edicii	ne	Ap	pply		
O4.	Deve	elop v	ariou	s imp	lants	using	biomate	erials				Ap	ply		
CO5.	Able	e to id	lentify	y vari	ous ap	plica	tions of	AM	in Med	licine	;	Aŗ	pply		
	oing w	ith P	rogra	ımme	Out	come	s and I	Progr	amme	Spec	cific (Outco	omes		
	-	РО	PO	РО	РО	РО	РО	PO	PO	PO	PO1	PO1	PSO	PSO	PSO
CO	PO1	2	3	4	5	6	7	8	9	1	1	2	1	2	3
CO1	S	L	-	-	-	-	-	-	-	-	-	-	M	-	-
CO2	S	S	M	-	M	-	-	-	-	-	-	-	S	-	-
CO3	M	S	L	-	M	-	-	-	-	-	-	-	L	-	-
CO4	M	L	-	-	L	-	-	-	-	-	-	-	M	-	-
204	M L M M S														

3 Dimensional Data Capture and Processing: (9 Hrs.)

Introduction to medical imaging, X-Ray technology, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound imaging, 3-D laser scanners, Industrial CT Scanners, 3D reconstruction and Reverse Engineering (RE)

Bio-modelling and Virtual Models in Medicine: (9 Hrs.)

Surgical applications of virtual models in Cranio-maxillofacial biomodelling, Oral and Maxillofacial surgery, customized cranio- maxillofacial prosthetics, Biomodel-guided stereotaxy, Vascular biomodelling, Skull-base tumour surgery, Spinal surgery and Orthopaedic biomodelling.

Biomaterials: (9 Hrs.)

Introduction to biomaterials, metallic biomaterials, ceramic biomaterials, polymeric biomaterials, composite biomaterials, biodegradable polymeric biomaterials, tissue- derived biomaterials

Design and Fabrication of Customized Implants and Prosthesis: (9 Hrs.)

Cranium implants, Hip implants, Knee implants, Inter vertebral spacers, Buccopharyngeal stent, Tracheobronchial stents, Obturator prosthesis and Tissue engineering scaffolds.

Design and Production of Medical Devices: (9 Hrs.)

Biopsy needle housing, Drug delivery devices, Masks for burnt victims, Functional prototypes help prove design value.

Text Books

1	Ian Gibson, Advanced Manufacturing Technology for Medical Applications, John
	Wiley, 2005.

Reference Books

- Paulo Bartolo and Bopaya Bidanda, Bio-materials and Prototyping Applications in Medicine, Springer, 2008.
- Andreas Gebhardt, Understanding Additive Manufacture: Rapid Prototyping, Rapid Tooling and Rapid Manufacture, Hanser Publishers, 2013. Joseph D. Bronzino, The Biomedical Engineering Hand Book, 3rd Edition, CRC Press, 2006.

S.No	Faculty Name	Designation	Department/Na me of the	Email id
1	L.Prabhu	Associate Professor	Mech / AVIT	prabhu@avit.ac.in
			Mech / VMKVEC	

RA	PID TO	OLIN	IG &	INDI	USTR	TAT.	Cat	tegor	L		\mathbf{T}	P	Cro	edit		
		PPLIC						C(SE)	3		0	0		3		
Preamb		pplica			e is de	esigned	d to in	npart k	knowle	dge ar	nd dis	cuss abo	out the	rapid toolin		
Prerequ	isite – N	Vil														
Course	Objectiv	ve														
1 To	discuss	the ba	sic co	oncep	ts and	techni	ques i	n rapio	d tooli	ng and	its pr	ocess m	odeling	Ţ,		
2 To	develop	vario	ous d	elive	ry sys	tem in	ivolve	ed in A	AM m	achine	es and	l syster	ns			
3 To	identify	the o	ptical	and o	optoel	ectroni	c com	ponen	its used	l in Al	M sele	ection P	rocess			
4 To	identify	vario	ous co	ontro	llers ı	ised ir	n AM	mach	ines a	nd sys	stems					
5 To	discuss	about	the ra	pid to	ooling	equipr	nent s	system	ıs.							
Course	Outcom	es: O	n the	succ	essful	comp	letion	of th	e cour	se, stu	dents	will be	e able t	0		
	Demonst ystems	rate th	e var	ious a	dditiv	e manı	ıfactuı	ring m	achine	s and		Unders	tand			
	Apply the AM macl					n desig	gning a	a deliv	ery sy	stem ii	1	Apply				
(4.12.1	pply op stems	tical a	nd op	toeled	ctronic	comp	onents	s in A	M ma	chines	and	Apply				
	pply the		ous co	ontrol	lers in	additi	ve ma	nufact	uring 1	nachir	nes	Unders	tand			
CO5.	ble to c	onstru	ict the	rapio	d tooli	ng equ	ipmen	ıt				Apply				
Mappin	g with F	rogra	amme	Out	come	s and	Progr	amme	e Spec	ific O	utcon	nes				
CO F	O PO	PO	PO	PO	PO	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO		
1	2	3	4	5	6	7	8	9	0	1	2	1	2	3		
CO1 S		-	-	-	-	-	-	-	-	-	-	M	-	-		
CO2	ИМ	M	-	M	-		-	-	-	_	-	S	-	-		
CO3	M	-	L	L	-	-	-	-	-	-	-	- M - L				
CO4	A S	-	-	L	-	-	-	-	-	-	-	- M				
CO5	И L	M	M	-	-	-	-	-	-	-	-	M	-	L		
S- Stron	g; M-M	ediun	n; L-	Low	1			1	<u> </u>	1	1		<u> </u>			

Introduction to Rapid Tooling & Process Modeling: (9 Hrs.)

Convectional Tooling Vs. Introduction to modeling, Concurrent Rapid Product and Process Development, Finite Element Modeling and Simulation, Injection-molding, Die-casting, Blow-molding, Thermoforming Processes modeling

Indirect Methods for Rapid Tool Production and Rapid Bridge Tooling: (9 Hrs.)

Role of Rapid Soft Tooling methods in tool production, Introduction to Bridge tooling, CAFÉ Bridge tooling, Direct AIM Rapid Bridge tooling, Rapid Tool Rapid Bridge tooling, Shrinkage Variation, Random- noise Shrinkage, Metal deposition tools, RTV tools, Epoxy tools, Ceramic tools, Cast Metal tools, Investment-cast Rapid Production tooling, Fusible metallic cores, Rapid Production tooling for Precision Sand Casting, Keltool process.

Direct Method for Rapid Tool Production: (9 Hrs.)

Role of direct methods in tool production, Direct ACES Injection moulds, Laminated Object Manufactured (LOM) tools, DTM Rapid Tool, Rapid Steel 1.0, Rapid Steel 2.0, Copper Polymide tools, Sand Form tools, EOS Direct Tool Process, Direct Metal Tooling using 3DP, Topographic Shape Formation (TSF) tools.

The Role of Rapid Tooling in Investment-Casting & Sand Casting Applications: (9 Hrs.)

Introduction, Rapid Tool Making for investment Casting, Rapid Tooling for developing Casting Applications, Sand casting Process, Tool Design and Construction for Sand Casting, Sand Casting Dimensional Control, Tooling Alternative Selection Case Studies

Rapid Tooling in the Medical Device & Automotive Industry (9 Hrs.)

Introduction, Investment Casting and Conventional Wax Pattern Tooling, Conventional Tooling Manufacture Vs. Rapid Tooling Manufacture, Medical Case studies like Hip Stem and Knee implants. Approaching Niche Vehicle Markets, Accelerating Product Developments, Utilizing Rapid Prototyping and Manufacturing, Machining Laminates, Rapid Prototype Stages, Subsequent Casting Operations, Rapid Tooling Developments, Case Studies.

Text Books

1	D.T. Pham and S.S Dimov, Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping & Rapid Tooling, Springer, 2001.
2	Peter Hilton and Paul F Jacobs, Rapid Tooling Technologies and Industrial Applications, Marcel Dekker Inc., New York, 2001
Refer	ence Books
1	Wanlong Wang, Henry W. Stoll and James G. Conley, Rapid Tooling Guidelines for Sand Casting, Springer, 2010.
2	Andreas Gebhardt, Understanding Additive Manufacture: Rapid Prototyping, Rapid Tooling and Rapid Manufacture, Hanser Publishers, 2013.

S.No	Faculty Name	Designation	Department/Na me of the	Email id
1	L.Prabhu	Associate Professor	Mech / AVIT	<u>prabhu@</u> avit.ac.in
			Mech / VMKVEC	

			DΩI	VMI	7 D F	VCIN.	EER	INC		Categor	v L	Т	P	Cred	lit
			101	J 1 1V11	יא איי	IGII	EEK	ING		EC(SE)		0	0	3	
										risation sign	techn	iques	and app	lication	in
Prer	Prerequisite – NIL														
Cour	Course Objective														
1	Expla	in the	differ	ent po	olyme	rs and	l their	prope	erties						
2	Expla	in the	mech	anism	of po	lyme	risatio	on							
3	Expla	in the	differ	ent m	ethod	s of p	olyme	erizati	on						
4	Expla	Explain the polymer processes for additive manufacturing													
5	Expla	explain the designing concepts of polymeric devices and polymer additives													
Cour	Course Outcomes: On the successful completion of the course, students will be able to														
CO1										ies (the lecular v			gical,	Under	stand
CO2		C *	٠.				-		_	uses for				Under	
CO3		lain m olyme		s for o	detern	nining	g the n	nicros	tructu	ire and i	molec	ular w	eight	Under	stand
CO4	the s	signifi	cance	for A	M.			-		s, polyn	-			Under	stand
CO5			d the nufac			s and	desig	n cond	cepts	for use o	of poly	ymer i	n	Under	stand
Map	ping w	ith Pı	rograi	mme	Outco	omes	and F	rogra	amme	e Specif	ic Ou	tcome	es		
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	M	M	M	-	M	M		-	-	M	M	-	M	-	-
CO2	M	S	S		S	M				M	M	-	M	-	-
CO3	S		M		S		M			M	M	-	S	-	-
CO4	M		M	S	M			M		M	M	-	S	-	-
CO5	M	M	M	M	M			M		M	M	ı	S	-	-

INTRODUCTION (9 Hrs.)

Basic Concepts: Classification of polymers, Concept of functionality, Polydispersity and Molecular weight [MW], Molecular Weight Distribution [MWD], various methods of determination of MWD.

KINETICS AND MECHANISM (9 Hrs.)

Polymerization Kinetics Free radical polymerization, Mechanism of Polycondensation

POLYMERISATION (9 Hrs.)

Techniques of Polymerization and nano composites: Techniques of polymerization, bulk, emulsion, suspension, Polymer composites and nano-composites

POLYMER PROCESSING (9 Hrs.)

Methods of spinning for additive manufacturing: Wet spinning, Dry spinning. Biopolymers, Compatibility issues with polymers. Moulding and casting of polymers, Polymer processing techniques and the effect of these processing techniques on polymer structure,

DESIGN (9 Hrs.)

Designing of polymeric devices and polymers used for Additive: Aspects of designing polymeric devices and polymer additives, Polymers used for additive manufacturing: polyamide, PF resin, polyesters etc

Text Books

- 1 G Odian Principles of Polymerization, Wiley Inerscience John Wiley and Sons, 4th
- 2 V.R. Gowarikar Polymer Science, , New Age Int.

Reference Books

F.W. Billmeyer Jr Text book of Polymer Science, Inter science Publisher John Wiley and Sons, 3rd edition

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	L.PRABHU`	Associate	Mech / AVIT	prabhu@avit.ac.in
		Professor		
	J.SENTHIL	Associate	Mech / AVIT	jsenthil@avit.ac.in
2		Professor		

		3E) PRI	NTIN	IG A	ND		Cat	egor	L		\mathbf{T}	P	Cre	edit		
				DES	SIGN	ſ		EC	(SE)	3		0	0		3		
Prean	nble	'		The	cour	se is	design	ed to i	mpart	know	ledge	and sk	tills rel	ated to	3D printi		
chnol	logies,																
Prere	quisit	e – C	ompı	ıter I	Integ	rated	Manu	ufactu	ring								
Cours	se Ob	jectiv	'e														
1	Γο dis	cuss t	he ba	sic co	ncep	ts and	proce	dure fo	llowe	d in 3I) print	ing me	ethods				
2	Го сог	struc	t a CA	AD m	odel	for a	require	ed prod	luct								
3	Го ide	ntify 1	the us	e of d	liffere	ent ma	aterial	and su	pport	structu	res						
4	Го ехр	erime	ent wi	th dif	feren	t 3d p	rinting	proce	SS								
5	Го ide	ntify	the de	fects.													
Cours	se Out	tcome	es: Oı	n the	succ	essful	comp	letion	of th	e cour	se, stu	dents	will be	e able t	0		
CO1.							-	nethod					Unders				
CO2.		elop (_ file.	CAD I	Mode	ls ,Im	port a	and Ex	port C	AD da	ata and	gener	ate 1	Apply				
CO3.	Sele	ct a s _l	pecifi	c mat	erial 1	for the	e given	applic	cation.			1	Apply				
CO4.	Sele	ct a 3	D prii	nting	proce	ss for	an app	olicatio	n.			1	Apply				
CO5.	Able	e to id	lentify	the I	Produ	ct def	ects a	fter po	st prod	cessing	5	1	Apply				
Марр	ing w	ith P	rogra	mme	Out	come	s and	Progr	amme	Spec	ific O	utcom	es				
СО	PO1	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO		
		2	3	4	5	6	7	8	9	0	1	2	1	2	3		
CO1	M	L	-	-	-	-	-	-	-	-	-	-	M	-	-		
CO2	S	S	M	-	M	-	-	-	-	-	-	-	M	-	-		
CO3	M	M	L	L	L	-	-	-	-	-	-	-	M	-	-		
CO4	S	M	-	-	M	-	-	-	-	-	-	-	- M				
CO5	M	S	M	M	-	-	-	-	-	-	-	-	L	-	L		
S_ Str	ong.	M-M	ediun	1: L	Low				1	<u> </u>	l	<u> </u>	1				

3D PRINTING & CAD FOR ADDITIVE MANUFACTURING (7 Hrs.)

Introduction, Process, Classification, Advantages, Additive V/s Conventional Manufacturing processes, Applications. CAD Data formats, Data translation, Data loss, STL format.

ADDITIVE MANUFACTURING TECHNIQUES (12Hrs.)

Stereo- Lithography, LOM, FDM, SLS, SLM, Binder Jet technology. Process, Process parameter, Process Selection for various applications. Additive Manufacturing Application Domains: Aerospace, Electronics, HealthCare, Defence, Automotive, Construction, Food Processing, Machine Tools

MATERIALS (8 Hrs.)

Polymers, Metals, Non-Metals, Ceramics. Various forms of raw material- Liquid, Solid, Wire, Powder; Powder Preparation and their desired properties, Polymers and their properties. Support Materials

ADDITIVE MANUFACTURING EQUIPMENT (10 Hrs.)

Process Equipment- Design and process parameters, Governing Bonding Mechanism Common faults and troubleshooting, Process Design

POST PROCESSING & PRODUCT QUALITY (8 Hrs.)

Post Processing Requirement and Techniques, Product Quality Inspection and testing, Defects and their causes

Text Books

- 1 Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies:Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.
- 2 Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.

Reference Books

- 1 CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2017.
- Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011.
- J.D. Majumdar and I. Manna, "Laser-Assisted Fabrication of Materials", Springer Series in Material Science, 2013.

S.No	Faculty Name	Designation	Department/Na me of the	Email id
1	L.Prabhu	Associate Professor	Mech / AVIT	prabhu@avit.ac.in
			Mech / VMKVEC	

170	лесс8	28	ΔΓ	ΟνΔΝα	F 3D I	PRINT	ING LA	.R		Category		. Т	Р	Cre	edit
1711	, LCCO		Α.		30		III LA			СС	(0	4		2
Prear	nble										-				
This	course	e prov	ides t	he ba	sic kn	owled	lge ab	out 3	D prin	nting .					
Prere	erequisite – NIL														
Cours	se Ob	e Objective													
1	To ex	xplain	the b	asics o	of CA	D mo	dellin	g Tec	hniqu	ies					
2	То со	onstru	ct the	STL	file fo	ra gi	ven de	esign							
3	Make	e use o	of soft	ware	, to pe	erforn	the si	imula	tion.						
4	To de	emons	strate 1	the or	ientat	ion ,p	art slic	cing, s	suppo	rting and	tool pa	th Ger	eration	1	
5	To de	develop a working model using 3D printer													
Cours	se Ou	e Outcomes: On the successful completion of the course, students will be able to													
CO1.	To	dem	onstra	te th	e wor	king	of 3D p	orinte	r				Und	lerstan	d
CO2.	Co	nstru	ct a S	TL file	for a	given	desig	n					Арр	ly	
CO3.	Ap	ply th	ne soft	tware	for p	erforr	ning th	he sin	nulati	on			Арр	ly	
CO4.	_		ne con nerati	-	of pa	rt orie	entatio	on, sli	cing,	supportin	g and t	tool	Арр	ly	
CO5	Ar	nalyze	the to	ool pa	th sin	nulatio	on and	d gene	eratio	n of work	ing mo	dels	Ana	lyze	
Map	ping v	with I	Progra	amme	e Out	comes	s and l	Prog	ramn	ne Specifi	c Outo	comes	•		
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	L	L	-	-	-	-	-	-	-	-	L	М	-	S
CO2	М	М	М	-	-	-	-	-	М	-	-	М	L	-	М
CO3	S	М	М	-	-	I	-	-	S	-	ı	М	М	ı	S
CO4	L	М	L	-	-	-	-	1	М	-	-	М	S	-	S
CO5	L	S	L	-	S	-	-	-	М	-	-	S	S	-	М

LIST OF EXPERIMENTS:

- 1. Review of CAD Modeling Techniques and Introduction to RP
- 2. Forming Groups & Assigning Creative Idea
- 3. Generating STL files from the CAD Models & Working on STL files
- 4. Modeling Creative Designs in CAD Software
- 5. Assembling Creative Designs in CAD Software
- 6. Processing the CAD data in Catalyst software (Selection of Orientation, Supports generation, Slicing, Tool path generation)
- 7. Simulation in Catalyst Software
- 8. Sending the tool path data to 3D Printer
- 9. Fabricating the physical part on 3D Printer
- 10. Removing the supports & post processing (cleaning the surfaces)
- 11. Demonstrating Creative Working Models
- 12. Converting CT/MRI scan data into STL file using MIMICS software (Demo)

Text Books

1 3D Printer manual

S.No	Faculty Name	Designation	Department/ College	Email id
2	L.PRABHU	Assoc.Professor	Mech/ AVIT	prabhu@avit.ac.in

	ADD	ITIV	E MA	ANUF	ACT	URING	j	Cat	egor	L	1	T	P	Cre	dit
			AACI YST	HINE FMS	S AN	D		EC	(SE)	3	3		0		3
Prear	mble			CIVIO								ı		I	
Ionuf	acturir	o mo	ahina				sign	ed to	impai	rt knov	wledge	and	discuss	about	the addi
				s and	syste	:1118.									
	equisit se Ob														
				sic co	ncept	ts and te	chni	ques in	n Add	itive N		cturin	g mach	ines & S	ystems
						y syste									
						ptoelect									
-						llers use			-				- Ction 1		
<u> </u>						oling eq					nd sys				
						essful co	_)
CO1.	Den		ate th	e vari	ous a	dditive r	manı	ufactui	ring m	achine	es and		Unders	tand	
CO2.				edure and sy		lved in o	desig	gning a	deliv	ery sy	stem ii	1	Apply		
CO3.	App		ical a	nd op	toelec	etronic c	omp	onents	in A	M mad	chines		Apply		
CO4.		ly the ystem		ous co	ntroll	ers in ac	dditi	ve mai	nufact	uring 1	nachir	ies	Unders	tand	
CO5.	Able	e to co	onstru	ct the	rapid	ltooling	equ	ipmen	t				Apply		
	l sing w	ith P	rngrg	mme	Out	comes a	and i	Progr	amme	Snec	ific Ω	utcon	nes		
···ap _k	ing w	PO	PO	PO	PO		20	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO
CO	PO1	2	3	4	5	6		8	9	0	1	2	1	$\begin{bmatrix} 150 \\ 2 \end{bmatrix}$	3
CO1	S	L	-	-	-	- 7	7	-	-	-	-	-	M	-	-
CO2	M	S	M	-	ML	-	-	-	-	_	-	-	L	-	-
CO3	M	M	-	-	L	-	-	-	-	-	-	-	M	-	-
CO4	L	M	-	-	L	-	-	-	-	-	-	-	- M -		-
CO5	M	S	M	L	-	-	-	_	-	-	_	-	M	-	_
				n; L-]	<u> </u>]]				

Construction of basic AM machines : (9 Hrs.)

Construction of CNC Machine - Axes, Linear motion guide ways, Ball screws, Motors, Bearings, Encoders/ Glass scales, Process Chamber, Safety interlocks, Sensors

Energy delivery, Material delivery, Nozzle and Heating Systems: (9 Hrs.)

Lasers & electron beam, Laser scanning system and Fibre Delivery Systems, Powder feeding and Wire feeding systems, Multi-material processing, Co-axial & Lateral Nozzles.

Optical, Optoelectronic components, (9 Hrs.)

Laser, basic laser optics, collimators, beam expanders, optic fibres, metal optics etc.

CNC Controller & Process Controller in AM: (9 Hrs.)

CNC Controller, Process Controller – Process parameters, Scanning strategies – Raster scan, Patterned Vector Scanning and Hatching Patterns.

Rapid Tooling equipment & Environmental control systems: (9 Hrs.)

Introduction, Classification of Rapid Tooling, Direct and Indirect Methods, Applications Environmental controller for temperature, oxygen level, humidity etc.

Text Books

1	Chee Kai Chua, Kah Fai Leong, 3D Printing and Additive Manufacturing: Principles and Applications: Fourth Edition of Rapid Prototyping
	Andreas Cakhardt Understanding Additive Manufacturing David Ductaturing David

Andreas Gebhardt, Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing

Reference Books

D.T. Pham, S.S. Dimov, Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling

S.No	Faculty Name	Designation	Department/Na me of the	Email id
1	L.Prabhu	Associate Professor	Mech / AVIT	<u>prabhu@</u> avit.ac.in
			Mech / VMKVEC	

				P	ROT	OTYI	PING		Ca	tegor	y]	L	T	P	Cre	edit
					ME	ГНОІ	DS		E	C - SE	C .	3	0	0	(3
Prea	mb	le : T	o stuc	ly the	Proce	ess inv	olved	d and	the m	ethodo	ology i	nvolve	ed in bui	lding a	Prototy	ype.
Prer	equ	isite :	: NIL	,												
Cour		Objec														
1	То	Unde	erstan	d the	protot	yping	meth	odolo	ogy us	ing 3D) Print	er.				
2	То	knov	v the j	produ	ct life	cycle	of th	e Prot	otype							
3	То	Understand the Economic aspect of prototype.														
4	То	Understand the Functional aspect of prototype.														
5	То	o Know the process flow and methods involved in development of prototype.														
Cour	rse	Outco	omes	On t	he su	ccessi	ful co	mplet	tion o	f the c	course	, stude	ents will	be ab	le to	
CO1		To Understand the conversion of a CAD file format to a printable Understand STL file format														
CO2		To understand the life cycle of a prototype and development based upon the application. Analyze														
CO3	•	To de	evelop	an ec	conon	nic mo	odel o	r a pro	ototyp	e for t	esting	•		Analy	/ze	
CO4		To de			oction	al mo	del or	a mir	niature	e based	d on th	e geor	netry	Analy	/ze	
CO5		To ur	nderst	and th	e vari	ious n	nethod	ds foll	lowed	in dev	velopii	ng a m	odel	Unde	rstand	
Мар	pin	g wit	h Pro	gram	me O	utcor	nes a	nd Pr	ograi	nme S	Specifi	c Out	comes			
		PO	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО		PSO	PSO	PSO
CO		1	2	3	4	5	6	7	8	9	10	11	PO12	1	2	3
CO	1	S	L	-	-	-	-	-	-			-	-	M	-	-
CO2	2	M	S	M	L		-	-	-	-	-	-	-	L	-	-L
CO3	3	M	L	L	-	M	-	-	-	-	-	-	-	L	-	-
CO	1	M	L	S	M	S	-	-	-	-	-	-	-	M	-	-
COS	5	M	M	M	S	M	-	-	-	-	-	-	-	M	-	L

SYLLABUS

INTRODUCTION TO PROTOTYPING (9 Hrs.)

Introduction to Prototyping – Product development – Prototyping principles – Data processing functions – Engineering aspects & Tactics in prototyping – Data Dictionaries - Integrated software workbench tools

PROTOTYPE - LIFE CYCLE MANAGEMENT (9 Hrs.)

Prototyping process – Product development - Types of Information system – Approaches to Systems Development – Business model - Technology model – Project management

ECONOMIC ASPECTS OF PROTOTYPE (9 Hrs.)

Rapid manufacturing process optimization – Factors influencing accuracy – Errors in finishing - Training procedures – Tools & Techniques for prototype inspection – Robotic & computer aided simulation system

FUNCTIONAL ASPECTS OF PROTOTYPE (9 Hrs.)

Factors favouring prototype - Assumptions in Prototype - Test plan - Operational documentation and procedures - Data size and operational impact analysis - Risk analysis.

PROTOTYPING METHODOLOGY (9 Hrs.)

Classification of prototypes - Throw-away Prototyping - Evolutionary Prototyping - Low Fidelity Prototyping - High Fidelity Prototyping - Classification of user interface prototypes - Presentation Prototypes - Functional Prototypes - Breadboards - Pilot Systems.

Text Books

1

Chua C.K., Leong K.F. and LIM C.S Rapid prototyping: Principles an Applications, World Scientific publications, 3rdEd., 2010

Reference Books

D.T. Pham and S.S. Dimov, "Rapid Manufacturing", Springer, 2001

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	R.PRAVEEN	ASST. PROF –GR- II	Mech / AVIT	praveen@avit.ac.in

			T	HEO	RY O	F 3D		Ca	itegor	y .	L	T	P	Cro	edit
				PRI	NTIN	IG		E	C - SI	E	3	0	0	3	3
Pream To stuc applica	ly the v	ariou	s theo	ries o	f 3D _I	orintin	ng and	l the t	echno	logies	used d	lependin	g upon	the	
Prereg	uisite	:NIL													
Course	e Obje	ctive													
1 L	Inderst	and th	e fun	damei	ntals c	of vari	ous A	dditiv	ve Ma	nufact	uring 7	Technolo	gies.		
2 T	o knov	v abou	ıt dev	elopn	nent o	f prote	otype	s usin	g liqui	id base	ed 3D ₁	orinting	system	s.	
3 T	o knov	v abou	ıt dev	elopn	nent o	f prote	otype	s usin	g solic	d based	1 3D p	rinting s	ystems	•	
4 T	o knov	v abou	ıt dev	elopn	nent o	f prote	otype	s usin	g Pow	der ba	sed 3E) printing	g syste	ms.	
5 T	o unde	rstanc	the r	ecent	trend	s in va	arious	indus	stries.						
	Outo	0.222.0.0.0	On t	ho au	00000	Sul aco	mnla	tion o	f that	2011110	atud		he obl	lo 40	
Course												ents will			
CO1.	Understand the fundamentals of Additive Manufacturing Technologies for engineering applications. Understand														
CO2.		rstand GC te				y to m	nanufa	acture	the pi	roduct	s using	SLA	Unde	rstand	
CO3.		rstanc DM t				y to n	nanufa	acture	the pi	roduct	s using	LOM	Unde	rstand	
CO4.					dolog ologie	•	nanufa	acture	the pi	roduct	s using	SLS	Unde	rstand	
CO5.		rstanc plicat		ecent	trend	s in 3	D prir	nting i	n vari	ous in	dustrie	s and	Unde	rstand	
Mappi	ng wit	h Pro	gram	me O	utcon	nes ai	nd Pr	ograr	nme S	Specifi	c Out	comes			
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO12	PSO 1	PSO 2	PSC 3
CO1	S	L	1	S	-	-	-	-	-	-	-	-	L	-	-
CO2	M	L	L	L		-	-	-	-	-	-	-	M	-	M
CO3	M	M	L	-	S	-	-	-	-	-	-	-	L -		L
CO4	S	M	L	M	S	-	-	-	-	-	-	-	S -		
CO5	S	M	S	S	M	-	_	_	_	_	_	_	L	_	-

SYLLABUS

INTRODUCTION TO ADDITIVE MANUFACTURING (9 Hrs.)

Introduction, Prototyping fundamentals, Historical development, Advantages of AMT, Commonly used terms, process chain, 3D modelling, Data Conversion, and transmission, Checking and preparing, Building, Post processing, RP data formats, Classification of AMT process, Applications to various fields

LIQUID BASED SYSTEMS(9 Hrs.)

Stereo lithography apparatus (SLA): Models and specifications, process, working principle, photopolymers, photo polymerization, layering technology, laser and laser scanning, applications, advantages and disadvantages, case studies. Solid ground curing (SGC): Models and specifications, process, working ,principle, applications, advantages and disadvantages, case studies.

SOLID BASED SYSTEMS(9 Hrs.)

Laminated object manufacturing (LOM): Models and specifications, Process, Working principle, Applications, Advantages and disadvantages, Case studies. Fused Deposition Modeling (FDM): Models and specifications, Process, Working principle, Applications, Advantages and disadvantages, Case studies, practical demonstration

POWDER BASED SYSTEMS(9 Hrs.)

Selective laser sintering (SLS): Models and specifications, process, working principle, applications, advantages and disadvantages, case studies. Three dimensional printing (3DP):Models and specification, process, working principle, applications, advantages and disadvantages, case studies.

RECENT TRENDS IN ADDITIVE MANUFACTURING (9 Hrs.)

Scalability form Prototyping to Mass Production –Flexibility in multi jet printing – Multi material printing – Application of 3D Printing in Automotive, Medical, Aero space and Defence industries – Case studies

Text Books

Paul F. Jacobs, "Rapid Prototyping and Manufacturing"-, ASME Press, 1996

Reference Books

1 Ian Gibson, Davin Rosen, Brent Stucker "Additive Manufacturing Technologies, Springer, 2nd Ed, 2014.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	R.PRAVEEN	ASST. PROF –GR- II	Mech / AVIT	praveen@avit.ac.in

	ADD	ITIV	E MA	ANUI	FACT	URI	NG	Cat	egor	L	,	Г	P	Cr	edit	
				ESSI ICAT				EC	(SE)	3		0	0		3	
Prea	mble			The	cour	se is	desion	ned to	imnaı	t knov	vledge	and	discuss	about	the additive	
Manuf	acturir	ng pro	cesse				_	100 10	mpui	· Kilov	vicage	una	a 15 c a 55	uoout		
Prere	quisit	e – N	il													
Cour	se Ob	jectiv	e													
1	To dis	cuss t	he ba	sic co	ncep	ts and	techni	iques i	n Add	itive N	Ianufa	cturing	g Proce	sses		
2	To de	velop	a des	sign f	or ad	ditiv	e man	ufactu	ring p	roces	ses					
3	Γο identify the guidelines to be followed in AM selection Process															
4	To identify various Additive manufacturing applications															
5	To dis	cuss a	bout	the po	st pro	ocessi	ng pro	cedure	in Ac	lditive	Manu	facturi	ng Pro	cesses.		
Cour	se Ou	tcome	es: O	n the	succ	essful	comp	letion	of the	e cour	se, stu	dents	will be	e able 1	to	
CO1.	Den	nonstr	ate th	e vari	ous a	dditiv	e man	ufactui	ring pı	ocesse	es	٦	Unders	tand		
CO2.		ly the	_			lved i	n desi	gning a	ın add	itive		4	Apply			
CO3.	Und	erstan	d and	l appl	y the	guide	lines v	vhile se	electin	g a AN	M proc	ess	Apply			
CO4.	Und		d the	vario	us ap	plicat	ion of	additiv	e mar	nufactu	ring	1	Unders	tand		
CO5.	Able	e to id	entify	the p	ost p	rocess	sing pr	ocedur	e in A	M pro	cesses		Apply			
Map	ping w	ith P	rogra	mme	Out	come	s and	Progr	amme	Spec	ific O	utcom	nes —			
СО	PO1	РО	РО	РО		РО	РО	РО	РО	PO1	PO1		PSO		PSO	
CO1	S	2	3	4	5	6	7	8	9	0	1	2	1 M	2	3 M	
	S	L S	- M	-	- M	-	_	-	-	-	-	-	S	-	M	
CO2	M	M	IVI -	_	L	L			_			-	L	_	L	
CO3							-	-	-	-	-	-				
CO4	M	S	-	-	L	-	-	-	-	-	-	-	M	-	L	

CO5	S L M	M		-	-	-	-	M	-	ML	
S- Str	ong; M-Medium	ı; L-Low	<u> </u>								
SYLLAI	BUS										
Introd	uction to Additiv	ve Manufacturi	ng: (9 Hrs.)							
Inter	duction to AM A	Mayalutian D	istination ha	.t	A N / O -	CNC	maahi	nina A	drianta	and of AM	
AM j	duction to AM, A process chain - Co pulation, Machine	onceptualization	, CAD, con	version	to ST	L, Tra	nsfer t	_		-	
Design	for AM: (9 Hrs.)									
tools fo Other Assemb	tion, DFMA cond or AM, Part Orient Manufacturing Coly, Identification ication of AM pa	ntation, Remova Constraining Fea of markings/ no	al of Suppo atures, Inte umbers etc.	rts, Hol rlocking	lowing Feat	g out pures,	parts, l Reduc	Inclusion of	on of U	ndercuts and	
	id polymer systen			-		,			eet syste	em,	
	on methods for a	, <u> </u>	•			•	,		•	*	
product	tion planning and	control.									
AM A _I	oplications: (9 H	rs.)									
Engi manu	tional models, Pa neering analysis r Ifacturing. Applic	nodels, Rapid to cation examples	ooling, new	materia	ls deve	elopm	ent, Bi	-metall	ic parts	s, Re-	
Post pr	cocessing of AM	parts: (9 Hrs.)									
impr	ort material rerovement, preparanal techniques.			-			•	-			
Text B	ooks										
1	Ian Gibs Technolo	on, David W gies: Rapid Prot	,	Bren Direct D			•			facturing 2010	
2		ee Kai, Leong ientific. 2003.	Kah Fai, "	Rapid 1	Prototy	yping:	Princ	iples &	Appli	cations",	
Refer	ence Books										
1	Ali K. Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory & Practice", Springer, 2006.										
2		m, S.S. Dimov, ototyping and Ra	-		_		nnolog	ies and	Applic	cations of	
Cours	se Designers										
S.No	Faculty Name	Designation	Departr of the C		me E	mail ic					
<u> </u>	<u>L</u>		or the C	-mege							

1	L.Prabhu	Associate Professor	Mech / AVIT	prabhu@avit.ac.in
			Mech / VMKVEC	

					-~		-	Cat	egor	L		T	P	Cr	edit
		N	AEC:	HAN.	ICAI	L DES	IGN		S(SE)	3		0	0		3
	intro	luce t		-	ots of	Mecl	nanica	al desi	gn pı	rocess	in fir	nding	a solu	tion fo	or an
Prere	equisi	te - N	IL												
Cour	se Ob	jectiv	'e												
1	To dis	scuss t	he ba	sic c	oncep	ots of r	necha	nical o	design	1					
2	Γο apply the concepts of engineering design														
3	To ide	o identify the steps involved in product planning and development													
•		To make use of the conceptual design concepts in finding solution for a problem													
5	To ap	ply er	nbod	imen	t des	ign co	oncep	ts effe	ective	ly					
								_				tudeı	nts will		le to
CO1.	Disc	cuss tl	ne ba	sic co	ncep	ts invo	olved	in Med	chanic	al Des	ign		Unders	stand	
CO2.	tech	nical	syste	ns		entals o				_	d		Apply		
CO3.		strate elopm		teps i	nvol	ved in	prod	uct pla	nning	and			Apply		
CO4.	Den	nonstr	ate tl	ne coi	ncept	ual des	sign fo	or a en	ginee	ring pr	oblem	l	Apply		
CO5.	Illus	strate	the E	mboc	limen	t desig	gn						Apply		
—— Mapj	oing v	vith P	rogr	amm	e Ou	tcome	s and	l Prog	ramn	ne Spe	ecific (Outc	omes		
СО	РО	РО	РО	РО	РО	РО	РО	PO	РО	PO	РО	PO	PS	PS	PS
CO	1	2	3	4	5	6	7	8	9	10	11	12	0	O 2	O 3
CO1	M	M	M	-	-	-	-	-	-	-	-	-	M	-	M
CO2	M	S	S	-	-	-	-	-	-	-	-	-	S	-	L
CO3	L	L	L	L	-	L	-	-	-	-	-	-	L	-	L
CO4	M	M	L	L	-	M	-	-	-	-	-	-	L	-	L

CO5	L	M	L	M	M		-	-	-	-	-	-	M	_	L
S- Str	ong;	M-M	ediur	n; L	-Low										
SYLL	ABUS														
ENGIN	NEER	ING	DES	IGN	(9 H	rs.)									
designe needs,	Steps in designing, tasks and activities, varieties of engineering, design process and role of designer, iteration, decision making, resource conversion, systems and devices and variety of needs, need analysis, feasibility study, preliminary design, detail design, revision. Information for need and problems associated with information, variety of information.														
FUNDAMENTALS OF TECHNICAL SYSTEMS (9 Hrs.)															
	System approach fundamentals, assemblies and components, interrelationships, creativity as means to synthesis of alternatives, estimating the order of magnitude, design records.														
PROD	UCT	PLA]	NNIN	IG A	ND D	EVE	LOP	MENT	(9 H	rs.)					
_	Life cycle from production to consumption and disposal, description of tasks, description of design specification and activities.														
CONC	EPTU	J AL 1	DESI	GN (9 Hr	s.)									
Abstrac determi model,	inatio	n of d	imens	sions,	grap	hics,	visual								od
ЕМВО	DIM	ENT	DES	IGN	(9 Hr	's.)									
Steps, r cost. O reportin	ptimiz ng, pre	zation	, opti	mum	vs. o	ptima	ıl. Opt	imum a	and ro	bust d	esign.	Comm	nunicat	ion a	
Text B	ooks														
1	Mec	hanic	al De	sign]	Proce	ss by	DJ U	llman;	McGr	aw-Hi	ll Boo	k Co			
	Introd Kogal			_	eering	g Des	ign by	TTW	⁷ oods	on; Mo	cGraw	-Hill B	Book C	0.,	
Refer															
1	Engineering Design by GE Dieter; McGraw-Hill Book Co.														
2	Conceptual Design for Engineers by Michael French; Springer														
3	The Principles of Design by NP Suh; Oxford														
Cours	e Des	signe	rs												
S.No.	Facu	lty N	- lame	De	signa	tion		epartr ie of th		Na E	mail	id			

1	L.Prabhu	Associate Professor	Mech / AVIT	prabhu@avit.c.in
2				

	INTE	GRAT	TED I	PROI	OUCT	DES	IGN	C	atego	ry	L	T	P	(Credit
		AN	D DI	EVEL	OMI	ENT		E	C(SE	()	3	0	0		3
Prea	mble														
riteri	a follo	wed w	hile d				_	ed to i	impart	know	ledge	about	the pr	ocedur	e and desi
	equisit														
Coui	rse Ob	jectiv	e												
1	To dis	cuss t	he ba	sic co	ncept	ts and	techni	iques in	n Addi	itive M	Ianufa	cturin	g Proce	sses	
2	To de	velop	a des	sign f	or ad	ditive	man	ufactu	ring p	roces	ses				
3	To ide	entify	the g	uideli	nes to	be fo	llowe	d in Al	M sele	ction F	rocess	3			
4	To identify various Additive manufacturing applications														
5	To discuss about the post processing procedure in Additive Manufacturing Processes.														
Cou	rse Ou	tcome	es: O	n the	succe	essful	comp	letion	of the	cour	se, stu	dents	will be	e able 1	to
CO1.								ufactur					Underst		
								gning a					Apply		
CO2		ufacti				ivea ii	i desig	Silling a	iii addi	itive					
CO3.	Unc	lerstar	nd and	l appl	y the	guidel	ines v	vhile se	electin	g a AN	A proc	ess	Apply		
CO4.	Unc	lerstar	nd the	vario	us ap	plicati	on of	additiv	e man	ufactu	ring	1	Underst	tand	
JU4.	proc		antify	, tha r	ogt n	*0.0000	in a nr	ocedur	o in A	M pro	220020		Apply		
	AUI	e to tu	enury	/ աթ լ	ost p	locess	mg pi	ocedui	e III A	wi pro	cesses	1	rppry		
CO5	•														
	•	vith P	rogra	mme	Out	comes	and	Progra	amme	Speci	ific O	utcom	nes		
Map	· ping v	vith P		mme PO			and PO	Progra	amme PO				PSO	PSO	PSO
Map CO	ping w												PSO 1	PSO 2	3
Map CO	ping w PO1	PO 2 L	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO		3 M
1	ping w	PO 2	PO 3	PO 4	PO 5	РО	РО	РО	PO 9	PO1 0	PO1	PO1 2	PSO 1		3

CO	M	M	-	-	L	-	-	_	-	-	-	-	L	-	L
CO :	M	L	M	M	-	-	-	-	-	-	-	-	M	-	L
Under redes tools Unders Kano technappli	erstandsign notingue, ication	ding to the ding current of the curr	devel he opplology stom of cution s	opme portury, Pro er ne ustom tructur	ent, prinity, I poduct eeds & are saure. Prin report	Develo develo E Estal tisfact roduct rting. I	p a co ppmen blishi ion, tear Bench	nt team ing pro Prioriti down a	Imple as, Pla de duct to sing and example and	ement unning functi Custo kperim	a conc Proce on (9 l mer national	ept, Ross, Plantes, P	Function ar down	on ana	ering and heduling alysis systemess, methods cations on: (9 Hrs.)
scori Concep Syste	ng. pt em em mo	bodin odellii	n ent, ng and	Mod	elling oodim	of Pro	oduct incipl	metri	cs: (9	Hrs.)	oaches	s and c	case stu	ıdies. D	Design for the mpact.
meth	ılatior ıods								•	oustne	ss: Ro	bust [Design	model	construction
Text B	ooks	Kev	in N.	Otto	, Krist	in L. V	Wood	, Produ	ict De	sign, F	Pearsor	Educ	ation, 2	2004.	
2		W.	Ernes	t Ede	r, S. F	Iosend	ll., De	esign E	nginee	ering,	CRC F	ress, 2	2008.		
Refere	ence :	Book	s												
1		Gal	ıl, W	Beitz	J Felo	lhusur	ı, K. (G. Grot	e, Eng	gineeri	ng De	sign, 3	rd Edit	ion, Sp	oringer 2007.
2						and l		Abou	iel N	lasr,	"Engin	neering	g Desi	gn an	d Rapid
Cours	se Des									_ 1					
S.No	Facu	ulty N	lame	De	esigna	tion	m	epartn e o ollege		Na the	E mail i	id			

1	L.Prabhu	Associate Professor	Mech / AVIT	<u>prabhu@</u> avit.ac.in
			Mech / VMKVEC	

	MANU					TRO	L ANI		atego	-	L	T	P	(Credit
		AU	TON	IATI	UN			F	EC(SE	2)	3	0	0		3
Prea	mble	The ee		a daa:	anad	to im	nout als	dll and	1m ovv	ladaa	manuf		a cont	and and	automatian
				s desi	gnea	to IIII	part sk	III and	KIIOW	leage	manui	acturin	ig conti	or and	automation.
	<u>eauisit</u> rse Ob														
1				ındam	ental	s of a	utomat	ion, w	hen an	nd whe	re to a	pply th	nem.		
2	Identif	fy vari	ious n	nateri	al har	ndling	syster	ns and	auton	nation	systen	ıs.			
3	Apply	vario	us co	ntrol s	syster	ns in	manufa	acturin	g and	evalua	te auto	omatic	produc	ction	
4	Design	n an o	ptima	l circ	uit fo	r auto	mation	١.							
5	Use modeling and simulation for manufacturing automation.														
Con	ourse Outcomes: On the successful completion of the course, students will be able to														
CO1	. Und	lerstar	nd the				_	nation,					Jnders		
	Ider	<u>ly thei</u> itify v	n. ariou	s mate	erial l	nandli	ng sys	tems a	nd auto	omatic	n syst	ems. A	Apply		
CO2	·•							ufactuı					Apply		
CO3	· auto	matic	prod	uction	1				ing an	ia evai	luate				
CO4	Ana	llyze a	ın opt	imal o	circui	t for a	utoma	tion.				A	Apply		
CO5	Use	mode	eling a	and si	mulat	ion fo	or man	ufactur	ring au	itomati	ion.	A	Apply		
Map	ping w	ith P	rogra	ımme	Out	come	s and	Progra	amme	Spec	ific O	utcom	es		
		РО	PO	РО	РО	РО	РО	PO	PO	_	PO1		PSO	PSO	PSO
CO	PO1	2	3	4	5	6		8	9	0	1	2	1	2	3
CO	M	M	-	-	-	-	-	-	-	-	-	-	L	-	M
CO 2	S	L	M	-	L	-	-	-	-	-	-	-	M	-	L
CO	L	L	-	-	L	L	-	-	-	-	-	-	-	-	L
3 CO 4	S	M	-	-	L	-	-	-	-	-	-	-	M	-	L

CO L S L L L - L
5- Strong; M-Medium; L-Low
YLLABUS
ntroduction: (9 Hrs.)
Automation in production system principles and strategies of automation, basic Elements of a automated system. Advanced Automation functions. Levels of Automations, introduction to automation productivity.
Iaterial Handling System & Automated Manufacturing Systems: (9 Hrs.)
Over view of Handling system-Rotary feeders, oscillating force feeder, vibratory feeder, elevator type and Transport system storage system, Components of automation, line balancing, manufacturing cells & transfer mechanism. Fundamentals and analysis of transfer lines product design for automatic assembly.
ontrol Technologies in Automation: (9 Hrs.)
Industrial control system. Process industry vs Discrete manufacturing industries. Continuous vs discrete control. Continuous process and its forms, Sensors and Actuators. Other control system components. Supervisory Production Control and Management Systems, Evaluation of Automatic Production Product manufacturability. Orientation devices- active and passive devices, Parts orientation and Escapement.
neumatic and Hydraulic Components and Circuits: (9 Hrs.)
Pneumatic sensors and amplifiers. Jet destruction devices, Logic devices, Schmit triggering devices, developing pneumatic circuits for automatic die casting machine.
Iodeling and Simulation for Manufacturing Plant Automation: (9 Hrs.)
Introduction. Need for system modeling. Building mathematical model of a manufacturing plant. Modern tools in manufacturing automation, Robots and Application of Robots for ext Books
Mikell P Groover, Automation, Production Systems and Computer Integrated Manufacturing, 3rd Edition, Prentice Hall Inc., New Delhi, 2007.
Tiess Chiu Chang and Richard A.W., An Introduction to Automated Process Planning Systems. TMH. New Delhi. 2000.
Reference Books
Nanua Singh, System Approach to Computer Integrated Manufacturing, Wiley & Sons Inc., 1996.
Andrew Kusiak, Intelligent Manufacturing System, Prentice Hall Inc., New Jersey, 1992
Course Designers

S.No	Facı	ılty N	lame	De	signa	ition	m	epartn e o ollege		Na the	Eı	mail i	d			
1	L.	Prabh	u		socia ofesso			ech / A		FG	pr	abhu(<u>@</u> avit.	ac.in		
							Me	ch / V	MKV	EC					I	
	ADD	ITIV	E MA	ANUI	ACT	URI	NG	Cat	egor		L	,	Т	P	Cr	edit
				ESSI ICAT				EC	(SE)		3		0	0		3
Prear	acturii						_	ned to	impaı	rt kn	iow	ledge	and	discuss	about	the additive
	-	uisite – Nil														
Cours																
1 T	o disc	discuss the basic concepts and techniques in Additive Manufacturing Processes														
₂ T	o develop a design for additive manufacturing processes															
3 T	o ider	tify t	he gu	idelin	es to	be fo	llowed	in AM	I selec	ction	Pro	ocess				
4 T	o ider	ntify v	vario	us Ad	lditiv	e ma	nufact	uring	applic	catio	ons					
5 T	o disc	uss at	out tl	he pos	st pro	cessir	ig proc	edure	in Ado	ditiv	e M	lanuf	acturir	ng Proc	esses.	
Cours	se Ou	tcome	es: O	n the	succ	essful	comp	letion	of the	e co	urs	e, stu	dents	will be	e able 1	to
CO1.	Den	nonstr	ate th	e vari	ous a	dditiv	e man	ufactui	ring pı	roces	sses	S	-	Unders	tand	
CO2.		ly the	•			lved i	n desi	gning a	ın add	itive	;			Apply		
CO3.	Und	erstar	nd and	l appl	y the	guide	lines v	vhile se	electin	ıg a	AM	I proc	ess -	Apply		
CO4.	Und		nd the	vario	us ap	plicat	ion of	additiv	e mar	nufac	ctur	ring	-	Unders	tand	
CO5.	Able to identify the post processing procedure in AM processes Apply															
Mapp	oing w	ith P	rogra	ımme	Out	come	s and	Progra	amme	e Sp	eci	fic O	utcon	nes		
	DC 1	РО	РО	РО	РО	РО	РО	РО	PO	РО	1	PO1	PO1	PSO	PSO	PSO
СО	PO1	2	3	4	5	6	7	8	9	0		1	2	1	2	3
CO1	M	L	-	-	-	-	<u>7</u> -	-	-	-		-	-	M	-	M
CO2	M	L	M	-	S	-	-	-	-	-		-	-	M	-	L
CO3	M	L	M	-	M	L	-	-	-	-		-	-	L	-	L
CO4	M	M	-	-	L	-	-	-	-	-		-	-	L	-	L

CO5 S L - L L - M
S- Strong; M-Medium; L-Low
SYLLABUS
Introduction to Additive Manufacturing: (9 Hrs.)
Introduction to AM, AM evolution, Distinction between AM & CNC machining, Advantages of AM,
AM process chain - Conceptualization, CAD, conversion to STL, Transfer to AM, STL file
manipulation, Machine setup, build, removal and clean up, post processing. Design for AM: (9 Hrs.)
Motivation, DFMA concepts and objectives, AM unique capabilities, Exploring design freedoms, Design
tools for AM, Part Orientation, Removal of Supports, Hollowing out parts, Inclusion of Undercuts and
Other Manufacturing Constraining Features, Interlocking Features, Reduction of Part Count in a
Assembly, Identification of markings/ numbers etc. Classification of AM processes & Guidelines for process selection: (9 Hrs.)
Liquid polymer system, discrete particle system, molten material systems, solid sheet system,
selection methods for a part, challenges of selection, example system for preliminary selection,
production planning and control.
AM Applications: (9 Hrs.)
Functional models, Pattern for investment and vacuum casting, Medical models, art models,
Engineering analysis models, Rapid tooling, new materials development, Bi-metallic parts, Re-
manufacturing. Application examples for Aerospace, defense, automobile, Bio-medical and
Post processing of AM parts: (9 Hrs.)
Support material removal, surface texture improvement, accuracy improvement, aesthetic
improvement, preparation for use as a pattern, property enhancements using non-thermal and
thermal techniques. Text Books
Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing
Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010
Chua Chee Kai, Leong Kah Fai, "Rapid Prototyping: Principles & Applications", World Scientific, 2003.
Reference Books
1 Ali K. Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory & Practice", Springer, 2006.
D.T. Pham, S.S. Dimov, Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling, Springer 2001
Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	L.Prabhu	Associate	Mech / AVIT	prabhu@avit.ac.in
1	L.Flabilu	Professor		
			Mech / VMKVEC	

			ROB	OTICS	S BAS	ED IN	IDUS'	TRIA	L	Categ	ory	L	T	P	Credit
17M	EEC11					/ATI				EC(F	PS)	3	0	0	3
PREAN															
	duce the			of autor	mation	in Va	rious	Indust	rial a _l	oplicat	ions				
		UISITE - NIL ORIECTIVES													
		COBJECTIVES													
1	To unc	o understand robotics based industrial automation													
2	To Ide	o Identify the various automated assembly systems													
3	To dev	o develop automated material handling and storage system													
4	To ide	To identify the various automated inspection and testing methods.													
5	To bui	To build the automated manufacturing systems.													
COURS	RSE OUTCOMES														
On the s	successfi	ul con	npletio	on of tl	ne cou	rse, stu	idents	will b	e abl	e to					
CO1.	Unde	erstan	d the	basics	of Indi	ustrial	Autor	natior	1				Une	derstand	
CO2.	Cons	struct	variou	ıs auto	mated	assem	bly sy	stems	\$				Ap	ply	
CO3.	Cons	struct	the au	tomate	ed mat	erial aı	nd sto	rage s	ystem	ıs.			Ap	ply	
CO4.	Dem	onstra	ate au	tomate	ed insp	ection	and 7	esting	g metl	nods			Ap	ply	
CO5.	Cons	struct	the au	tomate	ed man	ufactu	ring s	ystem	ıs				Ap	ply	
MAPPI	NG WI	NG WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES													
COS	PO1	РО	РО	РО	PO	РО	РО	РО	PO	PO	PO1	РО	PSO	PSO2	PSO3
		2	3	4	5	6	7	8	9	10	1	12	1		
CO1	M	M	-	-	-	-	-	-	-	-	-	-	M	-	-
CO2	L	S	M	-	M	-	-	-	-	-	-	-	S	-	-

CO3	M	M	M	L	M	-	-	-	-	1	-	-	S	-	-
CO4	S	M	M	L	M	M	-	-	ı	ı	-	ı	S	-	-
CO5	S	S	M	L	M	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION & FIXED AUTOMATION: (9 Hrs.)

Definition, automation principles and strategies, scope of automation, low cost automation Production concepts and automation strategies. Automated Flow lines, Methods of Work part Transport, Transfer Mechanism - Continuous transfer, intermittent transfer, and Indexing mechanism, Buffer Storage, Control Functions and Automation for Machining Operations. Analysis of Transfer Lines without Storage, Partial Automation, Automated Flow Lines with Storage Buffers.

AUTOMATED ASSEMBLY SYSTEMS: (9 Hrs.)

Design for Automated Assembly, Types of Automated Assembly Systems, Vibratory bowl feeder and Non vibratory bowl feeder, Part Orienting Systems, Feed tracks, Escapements and part placing mechanism, Analysis of Multi-station Assembly Machines, Analysis of a Single Station Assembly Machine.

AUTOMATED MATERIAL HANDLING & STORAGE SYSTEM: (9 Hrs.)

The material handling function, Types of Material Handling Equipment, Analysis for Material Handling Systems, Design of the System, Conveyor Systems, Automated Guided Vehicle Systems. Storage System Performance, Automated Storage/Retrieval Systems, Carousel Storage Systems, Work-in-process Storage, Interfacing Handling and Storage with Manufacturing.

AUTOMATED INSPECTION AND TESTING: (9 Hrs.)

Inspection and testing, Statistical Quality Control, Automated Inspection Principles and Methods, Sensor Technologies for Automated Inspection, Coordinate Measuring Machines, Other Contact Inspection Methods, Machine Vision, Other optical Inspection Methods.

MODELING OF AUTOMATED MANUFACTURING SYSTEMS: (9 Hrs.)

Role of Performance Modeling, Performance Measures, Performance Modeling Tools: Simulation Models, Analytical Models.

TEXT BOOKS:

1	Mikell P.Grover, "Automation, Production Systems and Computer Integrated Manufacturing",
	Pearson Education Asia, 2001.

2 C.RayAsfahl, "Robots and manufacturing Automation", John Wiley and Sons New York, 1992.

1	N.Viswanadham and Y.Narahari, "Performance Modeling of Automated Manufacturing
	Systems", Prentice Hall India Pvt. Ltd, 1992.
2	Stephen J. Derby, "Design of Automatic Machinery", Special Indian Edition, Marcel Decker,
	New York, Yesdee publishing Pvt. Ltd, Chennai, 2004.

COU	RSE	DESI	GNE	RS														
S. No).]	Name	of the	e Facu	lty	Desig	gnatio	n	Nan	ortmen ne of th				M	Iail ID			
1	R	.PRA	VEEN	1		Assista Profess			Mech AVIT	anical,		Pravee	n@a	vit.ac	e.in			
2																		
17Ml	EEC	11		AU	TOM	ATIO	N IN			Categ	gory	L		T	P	Credit		
27112				MA	NUFA	CTUF	RING			EC(I	PS)	3		0	0	3		
PREA	AMB	LE:	Γo int	roduce	the co	ncepts	of au	itomat	ion ir	vario	us In	dustrial	app	licati	ons			
		UISIT																
	1		restand robotics based industrial automation															
1					ous automated assembly systems													
2																		
3	То	develo	p auto	omated	mater	rial han	dling	and s	torage	e systei	m							
4	To i	identif	y the	various	s autor	nated i	nspec	ction a	nd tes	sting m	etho	ds.						
5	Tol	build t	he aut	omate	d manı	ufactur	ing sy	ystem	S.									
COU	RSE	OUT	СОМ	ES														
On the	e suc	cessfu	l com	pletion	of the	cours	e, stu	dents	will b	e able	to							
CO1.	U	nderst	and th	e basio	es of I	ndustri	al Au	tomat	ion					Un	derstand			
CO2.	C	onstru	ct var	ious au	itomat	ed asse	embly	syste	ms					Ap	ply			
CO3.	С	onstru	ct the	autom	ated m	aterial	and s	storag	e syst	ems.				Ap	ply			
CO4.	D	emons	strate	autom	ated in	specti	on and	d Test	ing m	ethods				Ap	ply			
CO5.	C	onstru	ct the	autom	ated m	nanufac	cturing	g syst	ems					Ap	ply			
			TH PI	ROGR	AMM	E OU	TCO	MES	AND	PROC	GRA	MME S	SPE	CIFI	C			
OUT	COM	1ES	ı	T		T	Τ	1	1	T	1				T			
CO S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 1	1 PC		PSO 1	PSO2	PSO3		
CO 1	S	M	-	-	-	-	-	-	-	-	-	-		M	-	-		
CO 2	M	S	M	-	L	-	-	-	-	-	-	-		L	-	L		

CO 3	M	M	L	L	L	-	ı	ı	ı	-	-	-	M	-	L
CO 4	L	L	M	L	M	S	-	-	-	-	-	-	M	-	-
CO 5	S	M	M	L	L	-	-	-	-	-	-	-	M	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

MECHATRONIC SYSTEMS: (6 Hrs.)

Overview of mechatronic systems and devices in manufacturing, automated feeding, transfer, retrieval mechanisms and devices, AGVs, FMS workstations, material handling and storage systems, overview of sensors, transducers and control systems in manufacturing.

HYDRAULIC SYSTEMS: (10 Hrs.)

Hydraulic systems: flow, pressure and direction control valves, actuators, supporting and control elements, pumps, servo valves and actuators, electro hydraulic servo- valves, proportional valves and their applications, design of hydraulic circuits for mfg applications and performance analysis.

PNEUMATIC SYSTEMS: (10 Hrs.)

Production, distribution and conditioning of compressed air, system components and graphic representations, design of circuits-switching circuits and sequential circuits, cascade methods, step counter method, compound circuit design.

ROBOTICS IN AUTOMATION: (12Hrs.)

Robot classification and anatomy, forward and inverse kinematics, DH matrix transformation, Jacobian and differential motion, Trajectory planning, Static and dynamic analysis, applications in manufacturing.

PLCS AND MICROPROCESSORS: (7 HRS.)

Basic structure - Input / Output processing - Programming - Mnemonics Timers, Internal relays and counters - Data handling - Analog input / output - Selection of PLC, Programming and interfacing of microprocessors in manufacturing applications.

TEXT BOOKS:

- Mikell P.Grover, "Automation, Production Systems and Computer Integrated Manufacturing", Pearson Education Asia, 2001.
- C.RayAsfahl, "Robots and manufacturing Automation", John Wiley and Sons New York, 1992.

- N.Viswanadham and Y.Narahari, "Performance Modeling of Automated Manufacturing Systems", Prentice Hall India Pvt. Ltd, 1992.
- Stephen J. Derby, "Design of Automatic Machinery", Special Indian Edition, Marcel Decker, New York, Yesdee publishing Pvt. Ltd, Chennai, 2004.

COU	RSE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	R.PRAVEEN	Assistant Professor G-II	Mechanical, AVIT	Praveen@avit.ac.in
2				

				A D	VANC	ED CIN	4 I A D			Category	ı	. Т	Р	Cr	edit
				ΑD	VAINC	ED CIN	II LAD			СС	(0	4		2
Prean	nble:	This	cours	e prov	vides	the ba	sic kn	owledge	e abou	t comput	er Inte	grated	Manuf	 acturing	g
Prere	auisit	e – N	JIL												
Cours															
1	Го ех	plain	the b	asics	of con	npone	nts rec	quired f	or buil	lding a C	IM.				
2	Го сог	nstru	ct the	CNC	progr	am fo	r a giv	en prof	ile in	milling &	t Turni	ng.			
3 I	Make	use o	of vari	ious fe	eature	s and	comm	ands in	mode	lling soft	ware in	ı desig	gning a	produc	t
5															
Cours										course, s					
CO1.			ne kno g a CII		_	senso	rs, tran	sducers	s and c	other con	nponen	ts in	App	oly	
CO2.			ne kno the C				ring, c	anned c	ycle a	nd subro	utine co	oncept	s App	oly	
CO3	Dev	velop	a par	t mod	lel usi	ng va	rious c	commar	nds				Ana	ılyze	
Mapp	ing w	ith I	Progra	amme	e Out	comes	s and l	Progra	mme S	Specific (Outcor	nes			
СО	РО	P O	РО	РО	РО	РО	РО	PO8	РО	PO10	PO1	РО	PSO	PSO	PSC
	1	2	3	4	5	6	7	100	9		1	12	1	2	3
CO1	M	L	L	-	-	-	-	-	-	-	-	L	M	-	L
CO2	M	S	M	-	-	_	-	-	M	-	-	M	M	-	M
CO2	 	L	M	_	_	_	-	-	L	_	-	M	L	-	L
CO3	L	L	141												

SYLLABUS:

CAM LABORATORY

- 1. Exercise on CNC Lathe: Plain Turning, Step turning, Taper turning, Threading, Grooving & canned cycle
- 2. Exercise on CNC Milling Machine: Profile Milling, Mirroring, Scaling & canned cycle.
- 3. Study of Sensors, Transducers & PLC: Hall-effect sensor, Pressure sensors, Strain gauge, PLC, LVDT, Load cell, Angular potentiometer, Torque, Temperature & Optical Transducers.
- 4. Mini project on any one of the CIM elements is to be done. This can be either a software or hardware simulating a CIM element. At the end of the semester, the students have to submit a mini report and present his work before a Committee.

CAD LABORATORY

- 2D modeling and 3D modeling of components such as
- 1. Bearing
- 2. Couplings
- 3. Gears
- 4. Sheet metal components
- 5. Jigs, Fixtures and Die assemblies.

Text Books

1 CIM LAB Manual

Course Designers

S.No	Faculty Name	Designation	Department/ College	Email id
1				
2	R.Praveen	Asst.Professor G-II	Mech/ AVIT	praveen@avit.ac.in

17ME	EC1	1		PROD MANU						Categ	ory	L	T	P	Credit
	201		1			MBLY		12		EC(F	PS)	3	0	0	3
PREA	MBI	LE:	Γo intr	oduce	the co	ncepts	of aut	omati	ion in	Variou	ıs Indus	strial ap	plication	ons	
PRER															
COUR					1	1 ' 1	, . 1								
1				roboti											
2	То	Iden	tify the	e vario	us auto	omated	lasser	nbly s	system	ıs					
3	То	deve	lop au	tomate	d mate	erial ha	ındlin	g and	storag	ge syste	em				
4	То	iden	ify the	vario	us auto	mated	inspe	ection	and te	esting r	nethod	S.			
5	То	build	l the au	ıtomat	ed mai	nufactu	ıring s	systen	ns.						
COUR	SE	EOUTCOMES													
On the	succ	essfi	ıl com	pletion	of the	cours	e, stud	dents	will b	e able t	.O				
CO1.	U	Inder	stand t	he qua	lity as	pects o	of desi	gn fo	r man	ufactur	e and a	ssembl	y. Un	derstand	
CO2.	A	pply	Booth	royd n	nethod	of DF	M for	prod	uct de	sign ar	nd asser	nbly.	Ap	ply	
CO3.	A	pply	the co	ncept	of DFI	M for c	asting	g, wel	ding,	formin	g and a	ssembl	y. Ap	ply	
CO4.	Ic	lenti	y the	design	factors	s and p	roces	ses as	per c	ustome	r speci	fication	is. Ap	ply	
CO5.	A	pply	the D	FM me	ethod f	or a gi	ven p	roduc	t.				Ap	ply	
MAPP	ING	ING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC													
OUTC	OM	ES													
COS	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 1	PO 12	PSO 1	PSO2	PSO3
CO1	S										-	M	_	-	

CO2	M	S	M	-	M	-	-	-	-	-	-	-	L	-	L
CO3	S	S	M	L	M	-	-	-	-	-	-	-	M	-	M
CO4	M	M	M	L	L	M	-	-	-	-	-	-	M	-	M
CO5	S	M	L	L	L	-	-	-	-	-	-	-	M	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

Introduction to DFM, DFMA: (9 Hrs.)

How Does DFMA Work?, Reasons for Not Implementing DFMA, What Are the Advantages of Applying DFMA During Product Design?, Typical DFMA Case Studies, Overall Impact of DFMA on Industry.

High speed Automatic Assembly & Robot Assembly: (9 Hrs.)

Design of Parts for High-Speed Feeding and Orienting, Additional Feeding Difficulties, High-Speed Automatic Insertion, General Rules for Product Design for Automation, Design of Parts for Feeding and Orienting, Product Design for Robot Assembly.

Design for Machining and Injection Molding: (9 Hrs.)

Machining Using Single-Point & Multi point cutting tools, Choice of Work Material, Shape of Work Material, Machining Basic Component Shapes, Cost Estimating for Machined Components, Injection Molding Materials, The Molding Cycle, Injection Molding Systems, Molding Machine Size, Molding Cycle Time, Estimation of the Optimum Number of Cavities, Design Guidelines.

Design for Sheet Metal working & Die Casting: (9 Hrs.)

Dedicated Dies and Press-working, Press Selection, Turret Press working, Press Brake Operations, Design Rules, The Die Casting Cycle, Auxiliary Equipment for Automation, Determination of the Optimum Number of Cavities, Determination of Appropriate Machine Size, Die Casting Cycle Time Estimation, Die Cost Estimation, Design Principles.

Design for Assembly Automation: (9 Hrs.)

Fundamentals of automated assembly systems, System configurations, parts delivery system at workstations, various escapement and placement devices used in automated *ass*embly systems, Quantitative analysis of Assembly systems, Multi station assembly systems, single station assembly lines.

TEXT BOOKS:

- Geoffrey Boothroyd, Assembly Automation and Product Design, Marcel Dekker Inc., NY, 3rd Edition, 2010.
- Geoffrey Boothroyd, Hand Book of Product Design, Marcel Dekker Inc., NY, 1992.

REFERENCES:

1 . GeofferyBoothroyd, Peter Dewhurst and Winston Knight, A, "Product Design for Manufacture and Assembly", CRC Press, 2011.

COUR	SE I	ESI	GNE	RS												
S. No.			the Fa		Des	signati	on		artm ne of	the				Mail I	D	
1	R.P	RAV]	EEN		Assis Profe	tant ssor G-	·II	Mecha AVIT		1,	Prave	en@a	vit.a	c.in		
2																
			REV	ERSE	ENG	INEE	RING	G AND	,	Cate	gory	L		T	P	Credit
		•	COM	PUTE	R AII	DED II	NSPE	CTIO	N	EC(PS)	3		0	0	3
PREA	MBI	E:T	o intr	oduce	the co	ncepts	of aut	tomati	on in	Vario	us Ind	ustria	l ap	plicatio	ons	
PRER	EQU	ISIT	E - N	IL												
COUR	RSE (DBJI	ECTI	VES												
1	To	unde	rstand	roboti	cs bas	ed ind	ustrial	auton	natio	n						
2	To	Γο Identify the various automated assembly systems														
3	То	devel	lop au	tomate	d mate	erial ha	andlin	g and	stora	ge syst	tem					
4	To	ident	ify the	vario	us auto	mated	linspe	ection	and t	esting	metho	ds.				
5	То	build	the au	ıtomat	ed mai	nufacti	aring s	system	ıs.							
COUR	RSE (OUT	COM	ES												
On the	succ	essfu	l com	pletion	of the	cours	e, stu	dents v	vill t	e able	to					
CO1.			y and compo	-	n the s	teps in	volve	d in re	vers	e engin	neering	of a		Un	derstand	i
CO2.	D fa	evelo brica	p des te a gi	ign cha	ompon			ient's r						Ap	ply	
CO3.	A	pply	the co		of cal			ceabili	ty ar	id unce	ertainty	for		Ap	ply	
CO4.	Id	entif	y and		te mea	surem		rors ar	nd su	ggest	suitabl	e		Ap	ply	
CO5.							es for	dimer	sion	al met	rology			Ap	ply	
MAPP OUTC			гн рі	ROGR	AMM	E OU	TCO	MES A	AND	PRO	GRAN	IME	SP	ECIFI	C	
COS	P O	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1	P(PSO 1	PSO2	PSO3

	1														
CO1	S	M	-	-	-	-	-	-	-	-	-	-	M	-	-
CO2	S	S	M	1	M	ı	ı	ı	ı	-	-	ı	S	-	-
CO3	S	S	M	L	M	-	1	-	-	-	-	1	S	-	1
CO4	S	S	S	L	M	M	ı	ı	ı	-	ı	ı	S	-	1
CO5	S	S	M	L	M	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

Methodologies and Techniques for Reverse Engineering (9 Hrs.)

Introduction to reverse engineering, Reverse Engineering—The Generic Process
The Potential for Automation with 3-D Laser Scanners, What Is Not Reverse Engineering, What
is Computer-aided (Forward) Engineering, What Is Computer-aided Reverse Engineering,
Computer Vision and Reverse Engineering Reverse Engineering—Hardware and Software:
Contact Methods Noncontact Methods, Destructive Method

Selecting a Reverse Engineering System: (9 Hrs.)

The Selection Process, Some Additional Complexities, Point Capture Devices, Triangulation Approaches, "Time-of-flight" or Ranging Systems, Structured-light and Stereoscopic Imaging Systems, issues with Light-based Approaches, Tracking Systems, Internal Measurement Systems, X-ray Tomography, Destructive Systems, Some Comments on Accuracy, Positioning the Probe, Post processing the Captured Data, Handling Data Points, Curve and Surface Creation, Inspection Applications, Manufacturing Approaches

Integration Between Reverse Engineering and Additive manufacturing: (9 Hrs.)

Modeling Cloud Data in Reverse Engineering, Data Processing for Rapid Prototyping, Integration of RE and RP for Layer-based Model Generation, he Adaptive Slicing Approach for Cloud Data Modeling, Planar Polygon Curve Construction for a Layer, Determination of Adaptive Layer Thickness

Measurement Techniques(12 Hrs.)

Surface Roughness Measurement: Components of surface texture, Need for surface roughness measurement, Measurement of surface roughness, Roughness characterization, Roughness grades Geometric Form Measurement: Importance, Indication, Intrinsic and Extrinsic methods, Roundness, Straightness, Flatness, Cylindricity, Squareness, Parallelism, Run out and concentricity Coordinate Measuring Machine - Types of CMM - Probes used – Applications - dimensional metrology – Non-contact sensors for surface finish measurements. Screw Thread

Measurement: Terminology, Forms of thread, Errors in threads, Measurement of major, minor and effective diameters

Other Computer Aided Inspection Techniques/Instruments: (6Hrs.)

In-process Inspection and On- line Sensing, Automated Inspection Techniques, Image processing and its application in Metrology.

TEXT BOOKS:

- 1 K. Otto and K. Wood, *Product Design: Techniques in Reverse Engineering and New Product Development*, Prentice Hall, 2001.
- Reverse Engineering: An Industrial Perspective by Raja and Fernandes, Springer-Verlag 2008.

REFERENCES:

- 1 Thomas. G. G., Engineering Metrology, Butterworth Pub.1974.
- 2 R. K. Jain, Engineering Metrology, Khanna Publishers, 19/e, 2005.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	R.PRAVEEN	Assistant Professor G-II	Mechanical, AVIT	Praveen@avit.ac.in
2				

AUTOMOTIVE CHASSIS LAB	Category	L	T	P	Credit
MOTOMOTIVE CHASSIS END	SE	0	0	4	2

Preamble

To impart knowledge in the assembling and dismantling of different types of systems like steering system, transmission system and braking system.

Prerequisite

Automotive Chassis (17ATCC03)

Course Objectives

To employ the knowledge and measurement of light and heavy commercial Vehicle chassis

To demonstrate the knowledge to dismantling, study and Assembling of front and rear axle.

To demonstrate the knowledge to dismantling, study and Assembling of Clutch, Gearbox, Steering gearbox, Breaking and Differential systems

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Conduct measurement of light and heavy commercial Vehicle chassis	Apply
CO2. Develop Thoroughly develop knowledge of dismantling, study and Assembling of front and rear axle.	Apply
CO3. Develop the knowledge in dismantling, study and Assembling of clutch, gearbox, steering gearbox, breaking and differential systems	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	M	M	M	-	-	-	-	M	M	ı	-
CO2	S	S	S	S	M	M	M	-	-	-	-	M	M	-	-
CO3	S	S	S	S	M	M	M	-	-	-	-	M	M	-	-

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

- 1. Study and measurement of Light commercial vehicle chassis layout
- 2. Study and measurement of Heavy commercial vehicle chassis layout
- 3. Dismantling, study and Assembling of Front Axle Systems.
- 4. Dismantling, study and Assembling of Rear Axle Systems
- 5. Dismantling, study and Assembling of steering systems with different Steering gearboxes
- 6. Dismantling, study and Assembling of Clutch.
- 7. Dismantling, study and Assembling of Gear box with different gear box
- 8. Dismantling, study and Assembling of Differential.
- 9. Dismantling, study and Assembling of Braking system.
- 10. Dismantling, study and Assembling of different types of suspension system.

Text Books

1. 'Automotive Chassis Lab Manual', Department of Automobile Engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

Cou	Course Designers:									
S.N	No Name of the Faculty	Designation	Department/College	Mail ID						
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in						
2	M.Saravana Kumar	Assistant. Professor GRII		saravanakumar@avit.ac.in						
3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in						

AUTOMOTIVE CHASSIS Category L T P Credit CC 3 0 0 3

Preamble

A chassis is the internal framework of an artificial object, which supports the object in its construction and use. An example of a chassis is a vehicle frame, the under part of a motor vehicle, on which the body is mounted; if the running gear such as wheels and transmission, and sometimes even the driver's seat, are included, then the assembly is described as a rolling chassis.

Prerequisite

Nil

Course Objectives

- To apply the concept of entire process involved in vehicle frame and steering systems.
 To perform the application of propeller shaft and final drive
 To employ the concepts of axles and tyres.
 To perform the application of Suspension System.
- 5. To apply the concepts of braking system in automotive chassis

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Summarize Automotive chassis and its accessories.	Understand
CO2. Utilize the applications of final drive	Apply
CO3. Apply the knowledge of axles and tyres.	Apply
CO4. Utilize the applications of Suspension System.	Apply
CO5. Develop the concepts of braking System.	Apply

Mapp	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1.	S	M	M	M	-	-	-	-	-	-	-	M	L	-	-
2.	S	M	M	M	-	-	-	-	-	-	-	M	L	-	-
3.	S	M	M	M	-	-	-	-	-	-	-	M	L	-	-
4.	S	M	M	M	-	-	-	-	-	-	-	M	L	-	-
5.	S	M	M	M	-	-	-	-	-	-	-	M	L	-	-

S- Strong; M-Medium; L-Low

INTRODUCTION, FRAME, STEERING SYSTEM

Types of Chassis layout, with reference to Power Plant location and drive, various types of frames, Loads acting on vehicle frame, Constructional details and materials for frames, Testing of frames, Types of Front Axles and Stub Axles, Front Wheel Geometry, namely, Castor, Camber, King Pin Inclination and Toe–in, Condition for True Rolling Motion of Wheels during Steering, Ackerman's and Davis Steering Mechanisms, Steering Error Curve, Steering Linkages, Different Types of Steering Gears, Slip Angle, Over–Steer and Under–Steer, Reversible and Irreversible Steering, Power–Assisted Steering.

PROPELLER SHAFT AND FINAL DRIVE

Effect of Driving Thrust, torque reactions and side thrust, Hotchkiss drive, torque tube drive, radius rods and stabilizers, Propeller Shaft, Universal Joints, Constant Velocity Universal Joints, Front Wheel drive, Final drive, different types, Double reduction and twin speed final drives, Multi–axled vehicles, Differential principle and types, Differential housings, Non–Slip differential, Differential locks, Final drive of Crawler Tractors.

AXLES AND TYRES

Construction and Design of Drive Axles, Types of Loads acting on drive axles, Full – Floating, Three–Quarter Floating and Semi–Floating Axles, Axle Housings and Types, Types and Constructional Details of Different Types of Wheels and Rims, Different Types of Tyres and their constructional details.

SUSPENSION SYSTEM

Need for Suspension System, Types of Suspension Springs, Constructional details and characteristics of Single Leaf, Multi–Leaf, Coil, Torsion bar, Rubber, Pneumatic and Hydro – elastic Suspension Spring Systems, Independent Suspension System, Shock Absorbers, Types and Constructional details, Design of Leaf and Coil Springs.

BRAKING SYSTEM

Theory of Automobile Braking, Stopping Distance Time and Braking Efficiency, Effect of Weight Transfer during Braking, Theory of Drum Brakes, Leading and Trailing Shoes, Braking Torque, Constructional Details of Drum Brake and its Activators, Disc Brake Theory, Hydraulic, Mechanical, Pneumatic and Power–Assisted Braking System, Servo Brakes, Retarders, Anti–Lock Braking System.

TEXT BOOK:

- 1. Kripal Singh, Automobile Engineering, Standard Publisher, New Delhi, 2012.
- 2. R.K. Rajput, A Text-Book of Automobile Engineering, Laxmi Publications Private Limited, 2015.
- 3. N.K. Giri, Automotive Mechanics, Kanna Publishers, 2007.

- 1. Heldt P.M., Automotive Chassis, Chilton Co., New York, 1990
- 2. Newton Steeds and Garret, Motor Vehicles, 13th Edition, Butterworth, London, 2005.
- 3. Heinz Hezler, Modern Vehicle Technology, Butterworth, London, 2005.

Cours	e Designers:			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	B. Samuvel Michael	Assistant. Professor GRII	Mech / AVIT	samuvelmichael@avit.ac.in

AUTOMOTIVE ELECTRICAL AND **ELECTRONICS LAB**

Category	L	Т	P	Credit
SE	0	0	4	2

Preamble

To familiarize and train the students on the constructional arrangements of different electrical system of automobiles and study the automobile electronics components.

Prerequisite

Automotive Electrical and Electronics Systems (17ATCC04)

Course Objectives

- To perform in battery tests, charging system and starting system trouble shooting.
- To demonstrate the application knowledge in the operation of alternator and lighting system.
- To describe the temperature and optical sensor.

Course Outcomes

On the successful completion of the course, students will be able to

on the successful completion of the course, students will be use to	
CO1.Experiment with the battery, charging system and starting system.	Apply
CO2. Develop thoroughly develop knowledge in application of operation of alternator and lighting system.	Apply
CO3. Make use of temperature and optical sensor	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

	U	U				U		_							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	M	M	M	-	-	-	-	M	M	-	-
CO2	S	S	S	S	M	M	M	-	-	-	-	M	M	1	-
CO3	S	S	S	S	M	M	M	-	-	-	-	M	M	-	-

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

- 1. Testing, charging and discharging of lead acid battery used in automobiles.
- 2. Testing and troubleshooting of starting system in automobiles.
- 3. Starter motor component test.
- 4. Testing and troubleshooting of charging system in automobiles.
- 5. Alternator component test.
- 6. Testing and troubleshooting of lighting system in automobiles.
- 7. Testing of lighting conventional analog instrumentation, indicator light, warning devices.
- Study of Temperature measurement using thermocouple.
- 9. Study of optical sensor

Text Books

1. 'Automotive Electrical and Electronics Lab Manual', Department of Automobile Engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University),Salem

Course	Desig	mers:

Course	e Designers:			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in
4				

AUTOMOTIVE ELECTRICAL AND ELECTRONICS SYSTEMS Category L T P Credit SE 3 0 0 3

Preamble

Automotive electrical and electronic systems used in road vehicles, enable study analyze and apply the concepts of various electrical and electronics component such as battery alternator ignition system and other engine management systems.

Prerequisite

Nil

Course Objectives

- 1. To perform the concepts of battery and charging systems..
- 2. To compilet the knowledge of starting systems in the vehicle.
- 3. To employ the knowledge in the application of various types of charging system & lighting system.
- 4. To demonstrate the application and knowledge of fundamental of automotive electronics.
- 5. To employ the application and knowledge of sensors and actuators.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Outline the concepts of Electrical and Electronics System	Understand
CO2. Summarize the various concept of starting systems.	Understand
CO3. Apply the various types of charging system & lighting system.	Apply
CO4. Identify the application automotive electronics.	Apply
CO5. Compare the sensors and actuators.	Apply

Mapp	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1.	S	M	M	L	-	-	-	-	-	-	-	L	L	-	-
2.	S	M	M	L	-	-	-	-	-	-	-	L	L	-	-
3.	S	S	S	M	-	-	-	-	-	-	-	M	L	-	-
4.	S	S	S	M	-	-	-	-	-	-	-	M	L	-	-
5.	S	S	S	M	-	-	-	-	-	-	-	M	L	-	-

S- Strong; M-Medium; L-Low

BATTERIES

Principle and construction of lead-acid battery. Characteristics of battery, rating, capacity and efficiency of batteries. Various tests on battery condition, charging methods. Details of modern storage batteries.

STARTING SYSTEM

Condition of starting Behavior of starter during starting. Series motor and its characteristics. Principle & construction of starter motor. Working of different starter drive units. Care & maintenance of starter motor, Starter switches.

CHARGING SYSTEM & LIGHTING SYSTEM

Generation of direct current, shunt generator characteristics, armature reaction, third brush regulation, cutout. Voltage and current regulators, compensated voltage regulator, alternators principle and constructional aspects and bridgerectifiers, new developments. Lighting system: insulated and earth return system, details of head light and sidelight, LED lighting system, head light dazzling and preventive methods – Horn, wiper system and trafficator.

FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Current trends in automotive electronic engine management system, electromagnetic interference suppression, electromagnetic compatibility, electronic dashboard instruments, onboard diagnostic system, security and warning system.

SENSORS AND ACTUATORS

Types of sensors: sensor for speed, throttle position, exhaust oxygen level,manifold pressure, crankshaft position, coolant temperature, exhaust temperature,air mass flow for engine application. Solenoids, stepper motors, relay.

TEXT BOOK:

- 1. Kholi, P.L., Automotive Electrical Equipment, Tata McGraw-Hill Co. Ltd., New Delhi, 2004.
- 2. Judge, A.W., Modern Electrical Equipment of Automobiles, Chapman & Hall, London, 2004.
- 3. Younng A.P & Griffiths L, "Automobile Electrical and Electronic Equipments", English Languages Book Society & New Press.
- 4. Tom Weather Jr and Cland C.Hunter, "Automotive Computers and Control system", Prentice Hall Inc., New Jersey.

REFERENCES:

- 1. Vinal, G.W., Storage Batteries, John Wiley & Sons Inc., New York, 1985.
- 2. Crouse, W.H., Automobile Electrical Equipment, McGraw Hill Book Co. Inc., New York, 1980.
- 3. Spreadbury, F.G., Electrical Ignition Equipment, Constable & Co. Ltd., London, 1962.
- 4. Automotive Hand Book, fifth edition, Robert Bosch, Bently Publishers, 2003.

Course Designers:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in

AUTOMOTIVE POLLUTION CONTROL

Category	L	T	P	С
SE	3	0	0	3

Preamble

To study and purpose is to understand automotive pollution control.

Prerequisite

NIL

Course Objectives

- 1 To understand the introduction of pollutions.
- 2 To understand the pollution formation in SI engines.
- 3 To understand the pollution formation in CI engines
- 4 To impart the control of emission in CI engines.
- To understand the measurement technique and emission standards.

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1.	CO1. Summarize the current scenario of Automobile Emissions and standards						
CO2.	Apply the formation of Emissions from SI Engines.	Apply					
CO3.	Apply the formation of Emissions from CI Engines.	Apply					
CO4.	Examine Emission and control Techniques in SI and CI Engines.	Analyze					
CO5.	Inspect measuring techniques of Emission and test procedure	Analyze					

Mapping with Programme Outcomes and Programme Specific Outcomes PO10 PO12 COs PO1 PO2 PO3 PO4 PO5 PO6 PO11 PSO1 PSO2 PSO3 CO1 S M M M M M ----------------CO2 S S S S M M M S S S S M CO3 M S ------CO4 S S S S M S M CO5 S S S S M S M

S- Strong; M-Medium; L-Low

INTRODUCTION

Introduction pollution control act- norms and standards. Vehicle population assessment in metropolitan cities and contribution to pollution, effects on human health and environment, global warming, types of emission, transient operational effects on pollution

POLLUTANT FORMATION IN SI ENGINES

Pollutant formation in SI Engines, mechanism of HC and CO formation in four stroke and two stroke SI engines, NOx formation in SI engines, effects of design and operating variables on emission formation, control of evaporative emission. Two stroke engine pollution

POLLUTANT FORMATION IN CI ENGINES

Pollutant formation in CI engines, smoke and particulate emissions in CI engines, effects of design and operating variables on CI engine emissions. Nox and Sox formation and control. Noise pollution from automobiles, measurement and standards.

CONTROL OF EMISSIONS FROM SI AND CI ENGINES

Design of engine, optimum selection of operating variables for control of emissions, EGR, Thermal reactors, secondary air injection, catalytic converters, catalysts, fuel modifications, fuel cells, Two stroke engine pollution control.

MEASUREMENT TECHNIQUES - EMISSION STANDARDS

NDIR, FID, Chemiluminescent analyzers, Gas Chromatograph, smoke meters, emission standards, driving cycles – USA, Japan, Euro and India. Test procedures – ECE, FTP Tests. SHED Test – chassis dynamometers, dilution tunnels

TEXT BOOK:

- 1. Paul Degobert Automobiles and Pollution SAE International ISBN-1-56091-563-3, 1991.
- 2. Ganesan, V- "Internal Combustion Engines"- Tata McGraw-Hill Co.- 2013.
- 3. SAE Transactions- "Vehicle Emission"- 1982 (3 volumes).

REFERENCES:

- 1. Obert.E.F.- "Internal Combustion Engines" 1988.
- 2. Marco Nute- "Emissions from two stroke engines, SAE Publication 1998

Course Designers:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in

ENGINE AND VEHICLE MANAGEMENT SYSTEM Category L T P C SE 3 0 0 3

Preamble

To study and purpose is to understand engine management system

Prerequisite

NIL

Course Objectives

00425	
1	To understand the fundamentals of automotive electronics in details.
2	To understand the types sensors
3	To impart knowledge on SI engine management system.
4	To impart knowledge on CI engine management system.
5	To understand the vehicle management systems

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1.	Summarize the vehicle motion control and stabilization system	Understand
CO2.	Classify Driver assistance, security and warning system	Understand
CO3.	Apply safety concepts used in passenger cars	Apply
CO4.	Identify vehicle collision and its effects.	Apply
CO5.	Apply Safety and comfort system	Apply

	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M				M				M	M		1
CO2	S	M	M	M				M				M	M		-
CO3	S	S	S	M				M				M	M		1
CO4	S	S	S	M				M				M	M		
CO5	S	S	S	M				M				M	M		
α α.	3.63	r 1'	Y Y												

S- Strong; M-Medium; L-Low

FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Microprocessor architecture, open and closed loop control strategies, PID control, Look up tables, Introduction to modern control strategies like Fuzzy logic and adaptive control. Parameters to be controlled in SI and CI enignes and in the other parts of the automobile

SENSORS

Inductive, Hall effect, hot wire, thermistor, piezo electric, piezoresistive, based sensors. Throttle position, air mass flow, crank shaft position, cam position, engine and wheel speed, steering position, tire pressure, brake pressure, steering torque, fuel level, crash, exhaust oxygen level (two step and linear lambda), knock, engine temperature, manifold temperature and pressure sensors

SI ENGINE MANAGEMENT

Three-way catalytic converter, conversion efficiency versus lambda. Layout and working of SI engine management systems like Bosch L-Jetronic and LH-Jetronic. Group and sequential injection techniques. Working of the fuel system components. Cold start and warm up phases, idle speed control, acceleration and full load enrichment, deceleration fuel cutoff. Fuel control maps, open loop control of fuel injection and closed loop lambda control. Electronic ignition systems and spark timing control. Closed loop control of knock.

CI ENGINE MANAGEMENT

Fuel injection system parameters affecting combustion, noise and emissions in CI engines. Pilot, main, advanced post injection and retarded post injection. Electronically controlled Unit Injection system. Layout of the common rail fuel injection system. Working of components like fuel injector, fuel pump, rail pressure limiter, flow limiter, EGR valve

VEHICLE MANAGEMENT SYSTEMS

ABS system, its need, layout and working. Electronic control of suspension – Damping control, Electric power steering, Supplementary Restraint System of air bag system – crash sensor, seat belt tightening. Cruise control. Vehicle security systems- alarms, vehicle tracking system. On board diagnostics. Collision avoidance Radar warning system.

TEXT BOOK:

- 1. William B Ribbens "Understanding Automotive Electronics", SAE Publications, 1998
- 2. Eric Chowanietz "Automobile Electronics" SAE Publications, 1994

- 1. Robert Bosch "Diesel Engine Management" SAE Publications, 2006
- 2. Robert Bosch, "Gasoline Engine Management" SAE Publications, 2006.

(Course Designers:											
	S.No	Name of the Faculty	Designation	Department/College	Mail ID							
	1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in							
	2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in							
	3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in							

Category L T P C **SPECIAL TYPES OF VEHICLES** SE 3 0 3

Preamble

This course reviews the fundamental concepts of earth moving equipments, power train concepts, sub systems of special types of vehicles, farm equipment, military and combat vehicles and special purpose vehicles for industrial applications.

Prerequisite

Nil

Course Objectives

Course	Conjectives								
1	To detail the working of earth moving and constructional equipments								
2	To describe power train concepts								
3	To explain the sub systems of special types of vehicles								
4	To describe the working of farm equipments, military and combat vehicles								
5	To explain the working of special purpose vehicles for industrial applications								

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1.	Desc	scribe the construction and working of earth moving and constructional equipments											nents	Unde	Understand	
CO2.		raise or		ower tra	ins app	olicable	for for	earth r	noving	and co	nstruct	ional		Aı	pply	
CO3.		Appraise on the function of all the sub-systems for earth moving and constructional equipments.											Aŗ	Apply		
CO4.	CO4. Appraise on the various farm equipments and military vehicles.										Aŗ	Apply				
CO5.	O5. Appraise on the various specially designed vehicles for industrial applications.									Ap	oply					
		\mathbf{M}	Lappin	g with l	Progra	mme (Outcon	nes and	Progr	amme	Specifi	ic Outo	comes			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	M	M	M				-			-	ı	S			
CO2	S	M	M	M				-				-	S		-	
CO3	S	S	S	M				-				-	S			
CO4	S	S	S	M				-				ı	S			
CO5	S	S	S	M				-				-	S			

S- Strong; M-Medium; L-Low

CLASSIFICATION AND REQUIREMENTS OF OFF ROAD VEHICLES

Construction layout, capacity and applications. Power Plants, Chassis and Transmission, Multivalve vehicles.

EARTH MOVING MACHINES

Earthmovers like dumpers, loaders - single bucket, Multi bucket and rotary types- bulldozers, excavators, backhoe loaders, scrappers, drag and self powered types, Bush cutters, stumpers, tree dozer, rippers etc. – Power and capacity of earthmoving machines.

SCRAPPERS, GRADERS, SHOVELS AND DITCHERS

Scrappers, elevating graders, motor graders, self powered scrappers and graders, Power shovel, revolving and stripper shovels – drag lines – ditchers – capacity of shovels.

FARM EQUIPMENTS, MILITARY AND COMBAT VEHICLES

Power take off, special implements. Special features and constructional details of tankers, gun carriers and transport vehicles.

VEHICLE SYSTEMS, FEATURES

Brake system and actuation – OCDB and dry disc caliper brakes. Body hoist and bucket operational hydraulics. Hydro-pneumatic suspension cylinders. Power steering system. Kinematics for loader and bulldozer operational linkages. Safety features, safe warning system for dumper. Design aspects on dumper body, loader bucket and water tank of sprinkler.

TEXT BOOK:

- 1. Off the road wheeled and combined traction devices Ash gate Publishing Co.Lt.
- 2. Satyanarayana. B., Construction planning and equipment, standard publishers and distributors, New Delhi.

REFERENCES:

- 1. Abrosimov.K. Branberg.A and Katayer.K, Road making machinery, MIR Publishers, Moscow, 1971.
- 2. Bart H Vanderveen, Tanks and Transport vehicles, Frederic Warne and Co Ltd., London.
- 3. Nakra C.P., "Farm machines and equipments" Dhanparai Publishing company Pvt. Ltd.
- 4. Robert L Peurifoy, "Construction, planning, equipment and methods" Tata McGraw Hill Publishing company Ltd.

CourseDesigners:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	B. Samuvel Michael	Assistant. Professor GRII	Mech / AVIT	samuvelmichael@avit.ac.in

TWO AND THREE WHEELER LAB	Category	L	Т	P	С
TWO AND THREE WHEELER LAD	SE	0	0	4	2

Preamble

To impart knowledge on clutch, gear box and performance on two and three wheeler

Prerequisite

Two and Three Wheeler Technology (17ATCC15)

Course Objectives

1 To understand the performance shock absorber and coil spring
2 To understand the two wheeler chain tension
3 To study three wheeler chassis frame.

Course Outcomes:

After Successful completion of this course, the students will be able to:

1 111001 200	The Buccessia completion of this course, the statents will be use to:														
CO1	CO1. Experiment with shock absorber and coil spring.												Apply		
CO2	CO2. Identify tension in the two wheeler											Apply	Apply		
CO3	CO3. Construct Three wheeler chassis frame.										Apply	Apply			
		M	apping	g with l	Progra	mme (Outcom	nes and	Progr	amme	Specifi	ic Outc	omes		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S S S S M M M										-	-				

S- Strong; M-Medium; L-Low

Syllabus

CO2

LIST OF EXPERIMENTS

- 1. Performance test of a shock absorber.
- 2. Performance test on coil spring.
- 3. Two wheeler chain tension test.
- 4. Brake and Clutch adjustment as per specification.
- 5. Dismantling and assembling of two wheeler gear box and finding gear ratio.
- 6. Dismantling and assembling of three wheeler gear box and finding gear ratios.
- 7. Dismantling and assembling of three wheeler steering system.
- 8. Study of three wheeler chassis frame and power transmission system.

Text Books

1. 'Two and Three Wheeler Lab Manual', Department of Automobile Engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem

Course Designers: Name of the Faculty Department/College Mail ID S.No Designation Mech / VMKVEC T.Raja **Associate Professor** rajat@vmkvec.edu.in 2 Mech / AVIT M.Saravana Kumar Assistant, Professor GRII saravanakumar@avit.ac.in 3 Mech / AVIT shivakumar@avit.ac.in N. Shivakumar Assistant. Professor GRII

T Category L C TWO AND THREE-WHEELER TECHNOLOGY SE 3 0 0 3

Preamble

To study and purpose is to understand two and three-wheeler technology

Prerequisite

NIL

Cours	Course Objectives								
1	To understand the power units.								
2	To understand the fuel and ignition systems								
3	To understand the fuel and ignition systems								
4	To understand the brakes and wheels								
5	5 To impart the various types of two and three-wheeler case study								
Cours	e Outcomes:								

After Successful completion of this course, the students will be able to:															
CO1	. Sum	ımarize	the po	wer uni	t									Understand	
CO2	. Clas	sify ch	assis ar	nd sub-s	systems	S								Understand	
CO3	. App	Apply brakes and wheels												Aŗ	pply
CO4	1. Identify two wheelers											Aŗ	pply		
CO5	CO5. Apply the detailed study of three wheelers										Apply				
	Mapping with Programme Outcomes and Programme Specific Outcomes														
		M	Iappin	g with l	Progra	mme (Outcon	nes and	l Progr	amme	Specif	ic Outo	comes		
COs	PO1	PO2	PO3	g with 1	Progra	mme (PO7	pos	PO9	PO10	Specif PO11	PO12	PSO1	PSO2	PSO3
COs CO1	PO1	1		Ĭ				I			_			PSO2	PSO3
		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11	PO12	PSO1		
CO1	S	PO2 M	PO3	PO4 M	PO5	PO6	PO7	PO8	PO9		PO11	PO12	PSO1 M		
CO1	S S	PO2 M M	PO3 M M	PO4 M M	PO5	PO6	PO7	PO8 M M	PO9		PO11	PO12 M M	PSO1 M M		

S- Strong; M-Medium; L-Low

THE POWER UNIT

Two stroke and four stroke SI engine, merits and demerits, symmetrical and unsymmetrical port timing diagrams. Types of scavenging processes, merits and demerits, scavenging efficiency, scavenging pumps, rotary valve engine.

FUEL AND IGNITION SYSTEMS

Fuel system, Fuel injection system, Lubrication system. Magneto coil and battery coil spark ignition system. Electro ignition system. Starting system. Kick starter system

CHASSIS AND SUB-SYSTEM

Main frame, its types. Chassis and shaft drive. Single, multiple plates and centrifugal clutches. Gear box and gear controls. Front and rear suspension systems. Shack absorbers. Panel meters and controls on handle bar.

BRAKES AND WHEELS

Drum brakes, disc brakes, front and rear brake links layouts. spoked wheel, cast wheel. Disc wheel. Disc types. Tyres and Tubes

TWO AND THREE WHEELERS CASE STUDY

Case study of Sports bike, Motor cycles, Scooters and Mopeds - Auto rickshaws, Pick up van, Delivery van and Trailer. Servicing and maintenance. Recent developments

TEXT BOOK:

- 1. Irving, P.E., Motor cycle Engineering, Temple press Book, Loondon, 1992
- 2. Bryaut, R.V., Vespa Maintenance and repair series. RAYMOND Broad, Lambretta- A practical guide to maintenance and repair, 1987

- 1. The Cycle Motor Manual, Temple Press Ltd., London, 1990
- 2. Encyclopedia of Motor cycling, 20 volumes, Marshall Cavensih, New York and London, 1989.

Course	Course Designers:												
S.No	Name of the Faculty	Designation	Department/College	Mail ID									
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in									
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in									
3	B. Samuvel Michael	Assistant. Professor GRII	Mech / AVIT	samuvelmichael@avit.ac.in									

VEHICLE MAINTENANCE AND
SERVICING LABCategoryLTPCSE0042

Preamble

To provide in house training in vehicle servicing and maintenance

Prerequisite

Vehicle Maintenance (17ATCC14)

Course Objectives

- To understand the clutch and gear box servicing
 To understand the Differential unit
 - 3 To understand the Ackermann Steering geometry

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1. Experiment with Gear box	Apply
CO2. Identify Differential unit.	Apply
CO3. Make use of steering geometry available in four wheeler.	Apply

	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	-	-	-	M	-	-	-	M	M	-	-
CO2	S	S	S	S	-	-	-	M	-	-	-	M	M	-	-
CO3	S	S	S	S	-	-	-	M	-	-	-	M	M	-	ı

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

- 1. Clutch assembly and servicing
- 2. Gearbox assembly and servicing
- 3. Differential unit assembly and servicing
- 4. Transaxle assembly and servicing
- 5. Different types of rear axle assembly and servicing
- 6. Brake system trouble shooting
- 7. Wheel alignment testing
- 8. Ackermann Steering geometry verification
- 9. Electrical signal and circuits
- 10. Servicing of accessories such as wiper motor, A/C system

Text Books

1. 'Vehicle Maintenance and Servicing Lab Manual', Department of Automobile Engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem

Course	Course Designers:													
S.No	Name of the Faculty	Designation	Department/College	Mail ID										
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in										
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in										
3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in										

VEHICLE MAINTENANCE Category L T P C SE 3 0 0 3

Preamble

To study and purpose is to understand various vehicle maintenance

Prerequisite

Nil

Cour	Course Objectives									
1	To understand the maintenance of records and schedules.									
2	To understand the engine maintenance and repair and overhauling.									
3	To understand the chassis maintenance and repair and overhauling									
4	To impart the various electrical system maintenance service and repairs.									
5	To understand the various maintenance of cooling, fuel, lubrication and body.									

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1	Sum	marize	vehicle	e maint	enance	record	s and so	chedule	;					Understand	
CO2	CO2. Explain repair and overhauling of engine												Understand		
CO3	3. Apply maintenance, repair and overhauling of chassis drive line components												Aŗ	pply	
CO4	104. Identify maintenance, repair and servicing of electrical systems										Apply				
CO5	CO5. Conduct maintenance, repair and servicing of cooling lubrication system, fuel system and body										Apply				
	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

	with 1 rogramme outcomes and 1 rogramme opecine outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	-			M				M	M		
CO2	S	M	M	M				M				M	M		
CO3	S	S	S	M	-			M				M	M		
CO4	S	S	S	M				M				M	M		
CO5	S	S	S	M	-			M				M	M		

S- Strong; M-Medium; L-Low

MAINTENANCE OF RECORDS AND SCHEDULES

Importance of maintenance, preventive (scheduled) and breakdown (unscheduled) maintenance, requirements of maintenance, preparation of check lists. Inspection schedule, maintenance of records, log sheets and other forms, safety precautions in maintenance..

ENGINE MAINTENANCE - REPAIR AND OVERHAULING

Dismantling of engine components and cleaning, cleaning methods, visual and dimensional inspections, minor and major reconditioning of various components, reconditioning methods, engine assembly, special tools used for maintenance overhauling, engine tune up

CHASSIS MAINTENANCE - REPAIR AND OVERHAULING

Mechanical and automobile clutch and gear box, servicing and maintenance, maintenance servicing of propeller shaft and differential system. Maintenance servicing of suspension systems. Brake systems, types and servicing techniques. Steering systems, overhauling and maintenance. Wheel alignment, computerized alignment and wheel balancing.

ELECTRICAL SYSTEM MAINTENANCE - SERVICING AND REPAIRS

Testing methods for checking electrical components, checking battery, starter motor, charging systems, DC generator and alternator, ignitions system, lighting systems. Fault diagnosis and maintenance of modern electronic controls, checking and servicing of dash board instruments.

MAINTENANCE OF FUEL SYSTEM, COOLING SYSTEMS, LUBRICATION SYSTEM AND VECHICLE BODY

Servicing and maintenance of fuel system of different types of vehicles, calibration and tuning of engine for optimum fuel supply. Cooling systems, water pump, radiator, thermostat, anticorrosion and antifreeze additives. Lubrication maintenance, lubricating oil changing, greasing of parts. Vehicle body maintenance, minor and major repairs. Door locks and window glass actuating system maintenance

TEXT BOOK:

- 1. John Doke "Fleet Management", McGraw-Hill Co. 1984
- 2. Venk Spicer, "Automotive Maintenance and Trouble Shooting".

- 1. James D Halderman Advanced Engine Performance Diagnosis PHI 1998
- 2. Judge.A.W., "Maintenance of high speed diesel engines", Chapman Hall Ltd., London.

Course Designers:												
	S.No	Name of the Faculty	Designation	Department/College	Mail ID							
	1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in							
	2	A.Imithyas	Assistant. Professor GRI	Mech / AVIT	imthicyr @avit.ac.in							
	3	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in							

VEHICLE TRANSPORT MANAGEMENT	Category	L	T	P	С
VEHICLE TRANSFORT MANAGEMENT	SE	3	0	0	3

Preamble

This course reviews the methods of training and training procedure in the transport management, scheduling and fare structure of various public and private and state government undertaking vehicles, maintenance and motor vehicle act **Prerequisite**

Nil

Course Objectives

- To provide an insight on the different procedures of selecting persons for job and personnel management
 To inculcate the various aspects of incorporating and managing a transportation system.
 To elucidate on the calculation of costs of transportation, fare fixation and scheduling.
 To provide the rules and regulations of transport system as per motor vehicle act of India.
 - 5 To inculcate the aspects of maintenance of automotive vehicles.

Course Outcomes:

After Successful completion of this course, the students will be able to:

Arter Successful completion of this course, the students will be able to.															
CO1.	App	Appraise on the various aspects of personnel management of a transport system.											Unde	Understand	
CO2.	Dev	Devise a transport system for a typical town with proper systems for effective operations.											Apply		
CO3.	Construct a fair table and prepare a schedule for a typical transportation system,											Apply			
CO4.		Appraise on the various rules and regulations of transport system as per motor vehicle act of India.										Apply			
CO5.	Develop a perfectly applicable maintenance schedule for an automotive.											Apply			
Mapping with Programme Outcomes and Programme Specific Outcomes															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M				-				-	S		
CO2	S	M	M	M		-	-	-				1	S		1
CO3	S	S	S	M				-				1	S		
CO4	S	S	S	M				_				-	S		
CO4	2	~	~												

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION

Personnel management; objectives and functions of personnel management, psychology, sociology and their relevance to organization, personality problems. Selection process: job description, employment tests, interviewing, introduction to training objectives, advantages, methods of training, training procedure, psychological tests.

TRANSPORT SYSTEMS

Introduction to various transport systems. Advantages of motor transport. Principal function of administrative, traffic, secretarial and engineering divisions. Chain of responsibility forms of ownership by state, municipality, public body and private undertakings

SCHEDULING AND FARE STRUCTURE

Principal features of operating costs for transport vehicles with examples of estimating the costs. Fare structure and method of drawing up of a fare table. Various types of fare collecting methods. Basic factors of bus scheduling. Problems on bus scheduling

MOTOR VEHICLE ACT

Traffic signs, fitness certificate, registration requirements, permit insurance, constructional regulations, description of vehicle-tankers, tippers, delivery vans, recovery vans, Power wagons and fire fighting vehicles. Spread over, running time, test for competence to drive.

MAINTENANCE

Preventive maintenance system in transport industry, tyre maintenance procedures. Causes for uneven tyre wear; remedies, maintenance procedure for better fuel economy, Design of bus depot layout.

TEXT BOOK:

1. John Duke, "Fleet Management", McGraw-Hill Co, USA, 1984.

REFERENCES:

1. Government Motor Vehicle Act, Publication on latest act to be used as on date

\sim	Our	er englier of			
S.	.No	Name of the Faculty	Designation	Department/College	Mail ID
1		T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2		M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3		B. Samuvel Michael	Assistant. Professor GRII	Mech / AVIT	samuvelmichael@avit.ac.in

INTRODUCTION TO ELECTRIC MOBILITY	Category	L	T	P	Credit
ELECTRIC MODILITY	EC	3	0	0	3

Preamble

To Design and develop innovative products and services in the field of Electric Vehicles in line with latest battery technology

Prerequisite - NIL

Course Objective

The program is expected to enable the students to

- The fundamental understanding of electric vehicles over conventional ICE vehicles & benefits
- Design and develop innovative products and services in the field of Electric Vehicles in line with latest battery technology
- Create the knowledge base to enable start-up & Innovation mindset in EV space
- Improve the collaborative working among the Institution / Industries towards Communicate effectively to propagate ideas and promote teamwork
- Attain intellectual leadership skills to cater to the changing needs of power industry, academia, society, and environment

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	design and develop a basic electrical vehicle component & system	Apply
CO2.	apply the learning in the field of EV like Battery technology, EV power train, Charging Infrastructure	Apply
CO3.	Apply the fundamental learning and use of modeling & simulation tools in the Problem-solving areas	Apply
CO4.	Interpret / recommend EV guidelines to Institution / Govt Bodies / Industries to work collaboratively & be as solution provider for cleaner & greener mobility.	Apply
CO5.	To work well with confidence in the areas on alternative power train in Automotive Industries.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	РО	РО	РО	РО	PO	РО	PO	PO	PO	PO1	PO1	PO12	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1		1	2	3
CO1	S	M	L	M	L	L							L	1	ı
CO2	S	M	S	M	M	M							L	-	-
CO3	S	M	M	L	M	L							L	1	1
CO4	S	M	S	M	S	S							L	-	-
CO5	S	M	S	M	S	S							L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS:

Introduction to Electric Vehicles

History of electric vehicles, Types of electric vehicles (Hybrid, Battery Electric Vehicle), Green Mobility Initiative from India, Policy Guidelines

EV trend in India, Challenges in EV growth, Comparison of Conventional Vehicles Vs Electric Vehicles in Vehicle performance, power source, Efficiency.

Vehicle Dynamics & EV Subsystems

Introduction to electric components used, Forces acting on Electric vehicle, Aerodynamic drag, Rolling resistance, uphill resistance, Power & Torque calculations, Introduction to Drive cycle, EV sub systems design (Motors, Controllers, Gears), Range and Energy calculation for 2W, 3W, 4W, Concept of Regeneration

EV Battery

Battery Chemistry, Battery design factors, Cost Vs demand curve, Why Lithium Ion batteries Battery Manufacturing basics, Research in battery chemistry. Cell design (series, Parallel, series + parallel), Battery Management systems, Battery testing, Battery Thermal management system, Battery Life estimation, second life applications; Introduction to battery modelling in Simulink/MATLAB

EV Motors

Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency. Power & torque calculations, Three phase A/c machines.

Charging Systems & EV Economics

EV Charger Introduction Chargers: Slow or Fast charging, On-board Chargers & Public chargers, Importance of standardization in Charging systems. Charging systems in Indian Context, Battery Swapping & Battery leasing. Cost of ownership comparison between Conventional Vehicles Vs Electric VehiclesImportance of Data analytics & IoT in Electric vehicles.

Reference Books

- 1. Chris Mi, M. Abul Masrur, David Wenzhong Gao, Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, John Wiley & Sons Ltd., 2011
- 2. Emadi, A. (Ed.), Miller, J., Ehsani, M., "Vehicular Electric Power Systems" Boca Raton, CRC Press, 2003.
- 3. Larminie, James, and John Lowry, "Electric Vehicle Technology Explained" John Wiley and Sons, 2012.
- 4. Tariq Muneer and Irene Illescas García, "The automobile, In Electric Vehicles: Prospects and Challenges", Elsevier, 2017.

- 5. Sheldon S. Williamson, "Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles", Springer, 2013.
- Electric Powertrain, Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles; John G. Hayes, University College Cork, Ireland; G. Abas Goodarzi; US Hybrid, California, USA
- 7. Guangjin Zhao, "Reuse and Recycling of Lithium-Ion Power Batteries", John Wiley & Sons. 2017. (ISBN: 978-1-1193-2185-9)
- 8. Arno Kwade, Jan Diekmann, "Recycling of Lithium-Ion Batteries: The LithoRec Way", Springer, 2018. (ISBN: 978-3-319-70571-2)
- 9. Ibrahim Dinçer, Halil S. Hamut and Nader Javani, "Thermal Management of Electric Vehicle Battery Systems", JohnWiley& Sons Ltd., 2016.
- 10. T R Crompton, "Battery Reference Book-3 rd Edition", Newnes- Reed Educational and Professional Publishing Ltd., 2000.
- 11. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001.
- 12. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
- 13. K Wang Hee Nam: AC Motor Control & Electrical Vehicle Application, CR Press, Taylor & Francis Group, 2019
- 14. Ramu Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC Press.
- 15. R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and applications, CRC Press
- 16. Fundamentals of Electric vehicles: Technology & Economics By Prof. Ashok Jhunjhunwala, Prof. Kaushal Jha, Prof. L Kannan, Prof. Prabhjot Kaur | IIT Madras, Course Material

Course	Course Designers								
S.No	Faculty Name	Designation	Department/ Name of the College	Email id					
1	Prof. T.Raja	Associate Profeesor	VMKVEC, Salem	rajat@vmkvec.edu.in					

ALTERNATE FUEL TESTING	Category	L	T	P	Credit
LAB	EC(SE)	0	0	4	2

Preamble

To impart knowledge on performance and emission characteristics on petrol and diesel engine.

Prerequisite

NIL

Course Objective

- To familiarize and train the students on the how to check VCR engine performance
- 2 To familiarize and train the students how to check the VCR engine in different methods'
- To familiarize and train the students how to measure the emission gases of IC engine

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Analysis and performance testing of different oil used in VCR engine	Apply
CO2.	Analysis and performance testing of Alternate Fuel using by different component in VCR engine	Apply
CO3.	Evaluate the function of Emmision gas testing and measurements by Gas Analyzer	Evaluate

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
CO	1	2	3	FU4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	S	-	-	-	-	-	-	S	-		-	S		
CO2	S	L	S	L	M	-	-	-	M	-		-	S		
CO3	S	S	-	L	M	-	-	-	S	-		-	M		

S- Strong; M-Medium; L-Low

SYLLABUS

LIST OF EXPERIMENTS

- 1. Performance Test on VCR engine using alternate fuel in different loads
- 2. Performance Test on VCR engine using alternate fuel in different comparison ratio.
- 3. Performance Test on VCR engine using alternate fuel in EGR
- 4. Performance Test on VCR engine using alternate fuel in Turbo Charger
- 5. Performance Test on VCR engine using alternate fuel in different Nuzzle hole
- 6. Measurement of HC, CO, CO₂, O₂ using exhaust gas analyzer.
- 7. Diesel Engine Smoke Measurement.
- 8. Study of NDIR gas Analyzer and FID.

9.	. Study of Chemiluminescent NOx Analyzer								
Text l	Text Books								
1	ALTERNATE FUEL TESTING LAB Manual								
Refer	Reference Books								
1	R.B. Gupta- "Automobile Engineering "- SatyaPrakashan								
2	Ganesan, V- "Internal	Combustion Engines	"- Tata McGraw-Hill	Co 2003.					
Cours	se Designers								
S.No	Denartment/								
1	SAMUVEL MICHAEL	Asso.Prof Gr-II	MECH/AVIT	samuvelmichael@avit.ac.in					

			DIO E	י מיתואי	~ \ \\	COTTA	ioi o	CV	Ca	tegory	L	T	P	Cı	redit
			BIO E	NEK	JY II	ECHN	OLO	GY	E	C(SE)	3	0	0		3
Prean To dis conve	semin				es for 1	utilizir	ng bio-	-energ	y and i	its man	ifold be	enefits co	mpared	to	
Prere	quisit	e - NI	L												
Cours	se Obj	jective	e												
1	To pro	o provide the students the sources of biomass.													
2	To ma	o make understand the students on different processes of biomethanation.													
3	To stu	ıdy th	e comb	oustion	of bio	o fuels	5,								
7			e gasif												
5	To pro	ovide	the stu	dents	on liqı	uefied	biofue	els.							
Cours	se Out	tcome	s: On	the su	ccessf	ul con	npleti	on of t	the co	urse, st	udents	will be a	ble to		
CO1.	To gain the knowledge of the basic concepts of Biomass preparation at also fuel assessments.										tion and	Understand			
CO2.	То	obtain	the m	ethods	of bio	ogas pi	roduct	ion an	d biog	as plan	ts.		Unde	rstand	
CO3.	Тоа	apply	the co	ncepts	of cor	nbusti	on pro	ocesses	s and f	uel han	dling s	ystems.	Apply	I	
CO4.	Тоа	apply	the tec	hnique	es for j	prepar	ation o	of biog	gases a	nd coal	ls.		Apply	7	
CO5.	Тоа	apply	the tec	hnique	es for	prepar	ation o	of biod	liesels	from v	egetabl	es.	Apply	7	
Марр	ing w	ith Pr	ogran	nme O	utcon	nes an	d Pro	gram	me Sp	ecific (Outcom	ies			
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	M	L	M	L	L	,				1		L	-	-
CO2	S	M	S	M	M	M							L	-	_
CO3	S	M	M	L	M	L							L	_	_
CO4	S	M	S	M	S	S							L	_	_
													L		
CO5	S	M	S	M	S	S								-	-
S- Str	ong; I	M-Me	dium;	L-Lo	w										

SYLLABUS: INTRODUCTION

Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversion mechanisms – fuel assessment studies – densification technologies – Comparison with coal – Proximate & Ultimate Analysis - Thermo Gravimetric Analysis – Differential Thermal Analysis – Differential Scanning Calorimetry

BIOMETHANATION

Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yield – possible feed stocks. Biogas plants – types – design – constructional details and comparison – biogas appliances – burner, luminaries and power generation – effect on engine performance

COMBUSTION

Perfect, complete and incomplete combustion - stoichiometric air requirement for biofuels - equivalence ratio - fixed Bed and fluid Bed combustion - fuel and ash handling systems - steam cost comparison with conventional fuels

GASIFICATION.PYROLYSIS AND CORBONISATION

Chemistry of gasification - types - comparison - application - performance evaluation - economics - dual fuelling in IC engines - 100 % Gas Engines - engine characteristics on gas mode - gas cooling and cleaning systems - Pyrolysis - Classification - process governing parameters - Typical yield rates. Carbonization Techniques - merits of carbonized fuels

LIQUID BIOFUELS

History of usage of Straight Vegetable Oil (SVO) as fuel - Biodiesel production from oil seeds, waste oils and algae - Process and chemistry - Biodiesel health effects / emissions / performance. Production of alcoholic fuels (methanol and ethanol) from biomass – engine modifications

TEXT BOOKS

- 1. Tom B Reed, Biomass Gasification Principles and Technology, Noyce Data Corporation, 1981
- 2. David Boyles, Bio Energy Technology Thermodynamics and costs, Ellis Hoknood Chichester, 1984.
- 3. Khandelwal KC, Mahdi SS, Biogas Technology A Practical Handbook, Tata McGraw Hill, 1986

Reference Books

- 1. Mahaeswari, R.C. Bio Energy for Rural Energisation, Concepts Publication, 1997
- 2. Best Practises Manual for Biomass Briquetting, I R E D A, 1997.
- 3. Eriksson S. and M. Prior, The briquetting of Agricultural wastes for fuel, FAO Energy and Environment paper, 1990
- 4. Iyer PVR et al, Thermochemical Characterization of Biomass, M N E S

S.No	Faculty Name	Designation	Department/ Name of the College	Email id		
1	R.MAHESH	ASSISTANT PROFESSOR (GR-II)	Mechanical/AVIT	mahesh@avit.ac.in		

Preamble

This course is intended to introduce principles of energy auditing and to provide measures for energy conservation in thermal utilities

Prerequisite

NIL

Course Objectives

1	To provide him the present energy scenario and the need for energy conservation.
2	To understand energy monitoring / targeting aspects of Energy
3	To study the different measures for energy conservation and financial implications of various
	thermal utilities.
4	To study the different measures of energy conservation in thermal systems.
5	To provide energy conservation measures of different thermal utilities.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the energy sources and scenario.	Understand
CO2	Understand energy monitoring / targeting aspects of Energy	Analysis
CO3	To apply the measures for energy conservation and financial implications of	Apply
	various thermal utilities.	
CO4	To apply the concepts and performance study of different types of corrosion	Apply
CO5	Performance analysis of thermal utilities	Analysis

Mapping with Programme Outcomes and Programme Specific Outcomes

С	PO	PS	PS	PSO3											
O	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	
C O1	S	М	L	М	L	L	-	1	-	-	-	1	∟	1	-
C O2	S	М	S	М	L	L	L	-	-	-	M	M	S	M	-
C O3	S	М	S	М	L	L	L	-	-	-	M	M	S	M	-
C O4	S	М	S	М	L	L	L	-	-	-	M	M	S	M	-
C O5	M	M	М	L	L	L	М	-	-	-	M	M	M	M	-

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION

Indian Energy Scenario – Types & Forms of Energy - Primary / Secondary Energy Sources – Energy Conservation – Need – EC Act 2003 : Salient Features – Energy Intensive Industries – Barriers - Roles & Responsibility of Energy Managers – Energy Auditing : Preliminary & Detailed - Benchmarking.

ENERGY MONITORING & TARGETING

Data & Information Analysis – Cost / Energy Share Diagram – Data Graphing – Break Even Analysis – Depreciation – Financial Analysis Techniques – CUSUM Technique – ESCO Concept – ESCO Contracts.

PERFORMANCE STUDY OF THERMAL UTILITIES - 1

Boiler – Stoichiometry – Combustion Principles – Heat Loss Estimation – Steam Traps – Steam Piping & Distribution – Thermic Fluid Heaters – Furnaces – Insulation & Refractories

PERFORMANCE STUDY OF THERMAL UTILITIES - 2

Introduction- forms of corrosion-pitting, intergranular, stress corrosion, corrosion fatigue, dezincification, erosion-corrosion, Crevice Corrosion, Fretting-Protection methods-PVD, CVD.

PERFORMANCE STUDY OF THERMAL UTILITIES – 3

Basics of R & A/C - COP / EER / SEC Evaluation - Psychometric Chart Analysis - Types & Applications of Cooling Towers - Basics - Performance Analysis - DG Set - Performance Prediction—Cost of Power Generation - Scope for Energy Conservation in all these

Text Books:

- 1 Smith, CB Energy Management Principles, Pergamon Press, NewYork, 1981
- 2 Hamies, Energy Auditing and Conservation; Methods Measurements, Management and Case study, Hemisphere, Washington, 1980
- 3 Trivedi, PR, Jolka KR, Energy Management, Commonwealth Publication, New Delhi, 1997

Reference:

- 1. Write, Larry C, Industrial Energy Management and Utilization, Hemisphere Publishers, Washington, 1988
- 2. Diamant, RME, Total Energy, Pergamon, Oxford, 1970
- 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001
- 4. Guide book for National Certification Examination for Energy Managers and Energy Auditors (Could be downloaded from www.energymanagertraining.com)

Course Desi	gners:	
S.No	Name of the Faculty	Mail ID
1	R.ANANDAN	Rajanand0072000@yahoo.com
2		
3		

									Categ	gory	L	T	P	C	redit
				ENEI	RGY I	AB			EC(SE)	0	0	4		2
Pream To cone		xperin	nents o	on various	s Energ	gy Eng	gineeri	ng dev	vices to	o study t	he perf	ormanc	e and its	applica	ations.
Prereq NIL	uisite														
Course	e Obje	ective													
1 T	Го ітр	art pra	actice	in solar w	vater h	eater.									
2				cal trainii			oiogas	plant							
3		•		cal trainii					ts cha	racteristi	CS				
4				for perfo								ilitias			
5											ergy ut	1111108			
				mance or he succes						studen	ts will l	ne able	to		
				ine succes						, studen	C 5 WIII ,				
CO1.	Unde	erstand	l the w	orking p	rincipl	e of di	fferen	t renev	wable (energy s	ources.			Appl	У
CO2.	Meas	sure th	e prop	erties of	differe	nt fue	ls.							Appl	y
CO3.	Appl	y the p	oractic	al trainin	g by v	arious	pump	and it	s char	acteristic	es			Appl	y
CO4.	Proc	edure t		dopted fo								ergy		Appl	y
CO5.	utilit		D (,		. ,	T 4 F	1						Appl	y
Manni				ormance me Outco						o Outoo	mos				
wiappii ———	ng wi			me Outc						Coulco			T = 0.0		ı
СО	PO1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	S	S	-	-	-	-	-	-	-	-	L	-	L		
CO2	S	L	S	L	-	-	-	-	-	-	L	-	L		
CO3	S	L	-	L	-	-	-	-	-	-	M	-	L		
CO4	S	M	L	-	-	-	-	-	-	-	M	-	L		
CO5	L	L	L	-	_	-	L	-	-	-	L	-	L		
1															

LIST OF EXPERIMENTS

- 1. Performance study in a solar water heater.
- 2. Characteristics study of solar photovoltaic devices.
- 3. Performance study of biogas plant.
- 4. Fuel characterization study in different fuels (proximate analysis, calorific value, viscosity, specific gravity etc.,)
- 5. Measurements of direct and diffused solar radiation.
- 6. Performance study on boiler.
- 7. Performance characteristics of motor test rig.
- 8. Computation of pump & pumping system characteristics (pump curve, system curve and BEP)
- 9. Analysis on fans characteristic curves
- 10. Performance study on various Heat Exchangers.
- 11. Performance characteristics of Vapour Compression Refrigeration test rig.
- 12. Study on fuel cell Systems.
- 13. Study on thermal storage systems
- 14. Study on biomass gasifiers.
- 15. Study on various alternate fuels for IC engines

Text Books

1 ENERGY LAB Manual

Reference Books

- 1 Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 1986
- 2 G.N. Tiwari, "Solar Energy Fundamentals Design, Modelling and applications", Narosa Publishing House, New Delhi, 2002

S.No	Faculty Name	Designation	Department/ College	Email id
1	A.SENTHILKUMAR	Assistant Professor	Mech / AVIT	senthilkumar@avit.ac.in

			ENIED	GY ST	CODAC	TE CV	eren 16	3	Cate	egory	L	T	P	C	redit			
			ENER	GISI	OKAC	JE SI	OI EMI	•		CC	3	0	0		3			
Also s	mpletio	are ab										ious energ nergy syste		ge syste	ems.			
Сония	eObjec	tivo																
1		ble the			ndersta	and the	e need	for en	ergy st	torage,	devices	and tec	hnologi	ies ava	ilable			
2	To stu	dy det	ails of	vario	ıs enei	gy sto	rage s	ystems	along	with a	pplicati	ons						
3	Enabl	ing to	identif	y the o	ptima	l solut	ions to	a par	ticular	energy	storage	applicat	ion/utili	ity				
4	To acc	quire k	nowle	dge or	ı vario	us ene	rgy sto	orage s	ystem	S								
5	To en	able th	e stud	ent to	unders	tand tl	ne desi	ign and	d appli	cation o	of vario	us energy	storage	e syste	ems			
Cours	eOutco	mes:O	nthesu	ccessfu	lcompl	etionof	thecou	rse,stu	dentsw	illbeabl	eto							
CO1.	Anal stora	-	e chara	cterist	cics of	energy	y from	variou	ıs sour	ces and	need f	or Under	rstand					
CO2.		sify va urpose		ypes o	f energ	gy stor	age ar	nd vari	ous de	vices us	sed for	Apply	Apply					
CO3.	Ident	ify vai	rious re	eal tim	e appl	icatio	ıs.					Apply						
CO4.	Unde	erstand	need	of ene	rgy sto	orage s	ystem	s				Under	stand					
CO5.		uire kı İysis aı		ige pe	rtainin	g to va	arious	ways t	o store	e energy	y, its	Under	stand					
Mappi	ingwith	Progra	mmeO	utcom	esandF	Prograi	nmeSp	ecificC	utcom	es								
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSC 3			
CO1	S	M	L	M	L	L							L					
CO2	S	M	L	M	L	L							L					
CO3	S	M	M	M	L	L							L					
CO4	S	М	M	M	L	М							L					
CO5	S	M	L	M	L	M							L					
S-Stro	ng;M-l	Mediun	n;L-Lo	w	<u> </u>	<u> </u>	<u>I</u>	1	<u> </u>	<u> </u>	<u> </u>	1	_1	1	1			
SYLL	ABUS																	
		roduct	ion·															

electrochemical, biological, magnetic, electromagnetic, thermal, comparison of energy storage technologies

UNIT – II: Mechanical Energy Storage:

Thermal Energy storage, sensible and latent heat, phase change materials, Energy and exergy analysis of thermal energy storage, Electrical Energy storage-super-capacitors, Magnetic Energy storage-Superconducting systems, Mechanical-Pumped hydro, flywheels and pressurized air energy storage, Chemical-Hydrogen production and storage

UNIT – III: Electrochemical Energy storage:

Thermodynamics and Kinetics of Electrochemical Reactions. Introduction to Electrochemical Techniques, Electrochemical Energy Storage Systems (a) Advanced Rechargeable Batteries (b) Supercapacitors. Hybrid power systems: Differences/interactions between batteries and supercapacitors.

UNIT – IV: Features of Energy Storage Systems:

Classification of EES systems, Mechanical storage systems, Pumped hydro storage (PHS), Compressed air energy storage (CAES), Flywheel energy storage (FES), Electrochemical storage systems, Secondary batteries, Flow batteries, Chemical energy storage, Hydrogen (H2), Synthetic natural gas (SNG).

UNIT V: Design and Applications of Energy Storage:

Renewable energy storage-Battery sizing and stand-alone applications, stationary (Power Grid application), Small scale application-Portable storage systems and medical devices, Mobile storage Applications- Electric vehicles (EVs), types of EVs, batteries and fuel cells, future technologies, hybrid systems for energy storage.

TEXTBOOKS

- 1. Energy Storage Technologies and Applications by Ahmed Faheem Zobaa, InTech.
- 2. Fundamentals of Energy Storage by J. Jensen and B. Sorenson, Wiley-Interscience, New York,
- 3. Handbook of battery materials by C. Daniel, J. O. Besenhard, Wiley VCH Verlag GmbH & Co. KgaA

ReferenceBooks

- 1. Fuel cell Fundamentals by R. O'Hayre, S. Cha, W. Colella and F. B. Prinz, Wiley Pub.
- 2. Chemical and Electrochemical Energy System by R. Narayan and B. Viswanathan, University Press.

 3. Battery Systems Engineering by C. D. Rahn and C. Wang, Wiley Pub
- 4. Electrochemical Energy Storage for Renewable sources and grid balancing by P. T. Moseley and J. Garche, Elsevier Science
- 5. Compressed air energy storage by F. P. Miller, A. F. Vandome, M. B. John, VDM publishing

S.No	FacultyName	Designation	Department/Nameo fthe College	Emailid
1	A. SENTHILKUMAR	ASSISTANT PROFESSOR(GRADE-II)	Mechanical/AVIT	senthilkumar@avit.ac.in

HYDROGEN AND FUEL CELL TECHNOLOGY

Category	L	T	P	Credit
EC(SE)	3	0	0	3

PREAMBLE

To enlighten on various technological advancements, benefits and prospects of utilizing hydrogen/fuel cell for meeting the future energy requirements.

PREREQUISITE

NIL

COURSE OBJECTIVES

- To detail on the hydrogen production methodologies, possible applications and various storage options.

 To discuss on the working of a typical fuel cell, its types and to elaborate on its thermodynamics and kinetics.

 To analyze the cost effectiveness and eco-friendliness of Fuel Cells.

 To make students understand the different fuel cells and their applications.
 - 5 To enable students to understand the economics of fuel cells.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Know the hydrogen production methodologies and various storage options	Understand
CO2.Know the working of fuel cell and its types with thermodynamic performance.	Understand
CO3. Understand the cost effectiveness and eco-friendliness of fuel cells.	Understand
CO4. Know the different types of fuel cells and their applications.	Understand
CO5.Understand the economics of fuel cells.	Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

cos	PO 1	PO 2	PO 3	PO4	PO 5	PO6	PO 7	PO8	PO 9	PO1 0	PO1 1	PO1 2	PSO1	PSO 2	PSO3
CO1	M	S	S	S	S	S	S						L		
CO2	S	S	S	M	M	M	L						L		
CO3	M	L			M	M	S						L		
CO4	S	M	M		M	M	M						L		
CO5	M	L			L	L	L						L		

S- Strong; M-Medium; L-Low

HYDROGEN – **BASICS AND PRODUCTION TECHNIQUES:** Hydrogen – physical and chemical properties, salient characteristics. Production of hydrogen – steam reforming – water electrolysis – gasification and woody biomass conversion – biological hydrogen production – photo dissociation – direct thermal or catalytic splitting of water.

HYDROGEN STORAGE AND APPLICATIONS:Hydrogen storage options – compressed gas – liquid hydrogen – Hydride – chemical Storage – comparisons. Safety and management of hydrogen. Applications of Hydrogen.

FUEL CELLS:History – principle - working - thermodynamics and kinetics of fuel cell process – performance evaluation of fuel cell – comparison on battery Vs fuel cell.

FUEL CELL – TYPES:Types of fuel cells – AFC, PAFC, SOFC, MCFC, DMFC, PEMFC – relative merits and demerits.

APPLICATION OF FUEL CELL AND ECONOMICS:Fuel cell usage for domestic power systems, large scale power generation, Automobile, Space. Economic and environmental analysis on usage of Hydrogen and Fuel cell. Future trends in fuel cells.

TEXT BOOKS:

- 1. Viswanathan, B and M Aulice Scibioh, Fuel Cells Principles and Applications, Universities Press (2006)
- 2. Rebecca L. and Busby, Hydrogen and Fuel Cells: A Comprehensive Guide, Penn Well Corporation, Oklahoma (2005
- 3. Bent Sorensen (Sørensen), Hydrogen and Fuel Cells: Emerging Technologies and Applications, Elsevier, UK (2005)

REFERENCES:

- 1. Kordesch, K and G.Simader, Fuel Cell and Their Applications, Wiley-Vch, Germany (1996)
- 2. Hart, A.B and G.J.Womack, Fuel Cells: Theory and Application, Prentice Hall, New York Ltd., London (1989)
- 3. Jeremy Rifkin, The Hydrogen Economy, Penguin Group, USA (2002).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	SHIVAKUMAR N	Asst. Prof II	Mechanical, AVIT	shiva.thermal@gmail.com

			REN			SOUR	CE	Cate	gory	L		Т	P	Cre	dit
				OF I	ENER	GY		EC	EC(SE)			0	0	3	}
that la increas approp	vable s singly a ck acce ses that oriate e	able to ess to e t are the nergy ency, is	meet energy hreater today	the not today ning to This	eeds for In according to reversis when	or avai ddition rse the ny sust	lable, , loca prog ainab	agree l energ ress in le ene	able, a gy reso n provi rgy, tl	and affo ources a iding e	ordable are not nergy t binatio	energy hit by to the pure of re	their co y, also f the high poor pec enewable	or the penergy ople that	eople price t lack
	se Obje														
1 '	To und	erstand	d the in	nporta	nce of	f solar	energ	V .							
	To lear							<i>,</i> -							
	To kno	w the i	import	ance o	of bio	energy.	,								
4	To kno	w vari	ous rei	newab	le ene	rgy pov	wer pl	lants.							
5	To lear	n the n	ecessi	tv of l	atest a	nd mod	dern e	nergy	source	es.					
Cours										se, stud					
CO1.		pply tl nal col			ation ,	measu	ireme	nts of	solar 1	adiatio	n and s	olar a	apply		
CO2.	To a		wind o	data ,e	energy	estim	ation	and v	wind e	energy	convers	sion a	apply		
CO3.		pply th	ne Bio	mass c	directs	Comb	ustior	n, Bion	nass g	asifier	and Bio	ogas a	apply		
CO4.	To a				ergy ,0	Open a	nd cl	osed (OTEC	Cycles	and Si	nall a	apply		
CO5.	То	o pian apply nologic	the		er gen	eration	n, tra	nsport	, Fu	iel cel	ls and	its	apply		
Mapp	ing wit	h Pro	gramn	ne Ou	tcome	s and	Progi	ramm	e Spec	ific Ou	tcomes	5			
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1	PSO	PSO 2	PS O3
CO1	M	M	M	-	-	-	-	-	9 -	-	1 -	2	1 M		US
CO2	S	M	M	-	-	-	_	-	-	_	-	-	M		
CO_{L}	1							ĺ			I	I	1	I	1

M

M

S- Strong; M-Medium; L-Low

M

M

M

M

M

M

CO4

CO5

S

S

SOLAR ENERGY

Solar Radiation – Measurements of solar Radiation – Solar Thermal Collectors – Flat Plate and Concentrating Collectors – Solar Applications – fundamentals of photo Voltaic Conversion – solar Cells – PV Systems – PV Applications

WIND ENERGY

Wind Data and Energy Estimation – wind Energy Conversion Systems – Wind Energy-Generators and its performance – Wind Energy Storage – Applications – Hybrid systems

BIO - ENERGY

Biomass, Biogas, Source, Composition, Technology for utilization – Biomass direct Combustion – Biomass gasifier – Biogas plant – Digesters – Ethanol production – Bio Diesel production and economics.

OTEC, TIDAL, GEOTHERMAL AND HYDEL ENERGY

Tidal energy – Wave energy – Open and closed OTEC Cycles – Small hydro plant turbines – Geothermal energy sources- environmental issues.

NEW ENERGY SOURCES

Hydrogen generation, storage, transport and utilization, Applications - power generation- transport – Fuel cells – technologies, types – economics and the power generation

Text Books

- G.D. Rai, "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 1999.
- S.P. Sukhatme, "Solar Energy", Tata McGraw Hill Publishing Company Ltd., New Delhi,1997.

Reference Books

- Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 1996
- Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 1986
- G.N. Tiwari, "Solar Energy Fundamentals Design, Modelling and applications", Narosa Publishing House, New Delhi, 2002
- 4 L.L. Freris, "Wind Energy Conversion systems", Prentice Hall, UK, 1990

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Raja.s	Assistant Professor	MECH / VMKVEC	raja_slm3@yahoo.co.in

			WASTE ENERGY Category L T P CONVERSION										Credit		
			T	ECH	NOLC	NGY		EC	(SE)	3		0	0	(3
Pream	ble														
conv chen	ert en	ergy f	rom th sion te	nat wa echniqu	ste. D	etailed	l stud	y exte	nds to	the m	ethod o	of the	disposa mo chen nd health	nical an	nd bio
Prereq	uisite	- NIL													
Course	e Obje	ective													
1 7	Γo und	erstan	d the w	aste a	nd wa	ste pro	cesses	S.							
2 7	Γo und	erstand	d waste	e treati	ment a	and dis	posal.								
									uma ah	emical		ai an			
4 7	Го арр	ly how	to coi	nvert v	vaste t	o ener	gy fro	m bio	chemi	cal con	version	•			
5 7	Γo ana	lysis th	ne envi	ronme	ental ir	npact o	due to	waste	with o	case stu	dy.				
Course	e Outc	omes:	On th	e succ	cessfu	l comp	oletion	of th	e cour	se, stu	lents w	vill be	able to		
CO1.	Expl	lained	types o	of wast	te and	source	of wa	aste					understa	nd	
CO2.	Und	erstanc	l vario	us was	ste trea	atment	and d	isposa	1				understa	nd	
CO3.		ly the v			niques	to con	vert w	aste to	o energ	gy by th	ermo		apply		
CO4.		ly variversion		ethods	to cor	nvert w	aste t	o ener	gy froi	m bio c	nemica	1	apply		
CO5.			e envi	ronme	ental a	nd hea	lth im	pacts o	due to	waste v	vith cas	e	analysis		
Mappi	study i ng wit		gramn	ne Ou	tcome	es and	Prog	ramm	e Spec	ific Ou	tcomes	<u> </u> S			
	n o:	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
CO	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	M	L											L		
CO2	S	M	L										L		
CO3	S M L L L														
CO4	S	S	M	L									L		
CO5	S	S	S	M									L		
													L		
S- Stro	ong; M	I-Med	ium; I	L-Low											

INTRODUCTION TO WASTE & WASTE PROCESSING

Definitions, sources, types and composition of various types of wastes; Characterisation of Municipal SolidWaste (MSW), Industrial waste and Biomedical Waste (BMW), waste collection and transportation; waste processing-size reduction, separation; waste management hierarchy, waste minimization and recycling of MSW; Life Cycle Analysis (LCA), Material Recovery Facilities (MRF), recycling processes of solid waste.

WASTE TREATMENT AND DISPOSAL

Aerobic composting, incineration, different type of incineration; medical and pharmaceutical waste incinerations- land fill classification, types, methods and sitting consideration, layout and preliminary design of landfills: composition, characteristics, generation, movement and control of landfill leachate and gases, environmental monitoring system for land fill gases.

ENERGY FROM WASTE-THERMO CHEMICAL CONVERSION

Sources of energy generation, incineration, pyrolysis, gasification of waste using gasifiers, briquetting, utilization and advantages of briquetting,-environmental and health impacts of incineration; strategies for reducing environmental impacts.

ENERGY FROM WASTE- BIO-CHEMICAL CONVERSION

Anaerobic digestion of sewage and municipal wastes, direct combustion of MSW-refuse derived solid fuel, industrial waste, agro residues, anaerobic digestion- biogas production, land fill gas generation and utilization, present status of technologies for conversion of waste into energy, design of waste to energy plants for cities, small townships and villages.

ENVIRONMENTAL AND HEALTH IMPACTS-CASE STUDIES

Environmental and healthimpacts of waste to energy conversion, case studies of commercial waste to energy plants, waste to energy- potentials and constraints in India, eco-technological alternatives for waste to energy conversions - Rules related to the handling, treatment and disposal of MSW and BMW in India.

Text Books

- Parker, Colin, & Roberts, "Energy from Waste An Evaluation of Conversion Technologies", Elsevier Applied Science, London, 1985.
- 2 Shah, Kanti L., "Basics of Solid & Hazardous Waste Management Technology", Prentice Hall, 2000.

Reference Books

- 1 Robert Green, From Waste to Energy, Cherry Lake Publication, 2009.
- Velma I Grover and Vaneeta Grover, "Recovering Energy from Waste Various Aspects", Science Pub Inc, 2002.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	R.CHANDRASEKAR	Assistant Professor	MECH / VMKVEC	chandrasekar@vmkvec.edu.in

ble npletion of the Also studer	MBUST	ION E.	NGIN	n.n.KI							P		edit				
npletion of the Also studer				LLI	NG	EC	C(SE)	3		0	0	3	3				
uisite NEERING T	ts are ab	le to ge	t the k	nowle								iel and					
e Objective																	
To Acquire	the funda	amental	know	ledge	of con	nbustio	on.										
To Understa	nd the th	nermody	ynamic	cs of co	ombus	stion.											
To Understa	nd the k	inetics o	of com	bustio	n.												
To Understand the types of flames.																	
To Understa	and the co	ombusti	on asp	ects ir	sI ar	nd CI I	Engine	s.									
e Outcomes	On the	success	sful co	mplet	ion of	the co	ourse,	studen	ts will	be able t	0						
Formulate and polluta		•		to dete	rmine	A/F,	adiaba	tic flam	e temp	erature		Apply					
Relate the models for			y and l	kinetic	s of co	ombus	tion to	evolve	mather	matical		Analyze	,				
Rate of phy and rate of						ition, p	oropag	ation ar	nd extin	ction,	U	nderstaı	nd				
Identify factors the different												Apply					
Summarize techniques	emissio	n associ	iated v	vith co	mbust	ion an	d iden	tify the	ir contr	ol		Analyze	;				
ng with Pro	gramme	Outco	mes a	nd Pro	ogran	ıme Sı	pecific	Outco	mes								
PO 1 PO2	Ī	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3				
S S	M	M	-	-	L	-	-	-	L	-	L						
S S	M	-	-	-	-	-	-	-	L	-	L						
S M	M	M	-	-	-	-	-	-	L	-	L						
	M	L	-	-	M	-	-	-	M	-	L						
S S	M	S	-	M	S	-	-	-	M	-	- L						
S M		M	M M M L	M M - M L -	M M M L	M M M L M	M M M L M -	M M M L	M M M L	M M L M L M M	M M L - M L - M -	M M L - L M L M M - L	M M L - L M L M M - L				

COMBUSTION OF FUEL

Introduction - Combustion equations - Theoretical air - Excess air - Air fuel ratio - Equivalence ratio - Exhaust gas composition - Air fuel ratio from exhaust gas composition - Heating value of fuels.

COMPRESSION IGNITION ENGINES

Thermo-chemistry, first law analysis of reacting systems - Adiabatic combustion temperature - Second law analysis of reacting systems - Criterion for chemical equilibrium - Equilibrium constant for gaseous mixtures - Evaluation of equilibrium composition - Chemical availability

KINETICS OF COMBUSTION

Rates of reaction - Reaction order and complex reactions - Chain Reactions, Arrhenius rate equation, collection theory - Activated complex theory - Explosive and general oxidative characteristics of fuels.

FLAMES

Laminar and turbulent flames - Premixed and diffusion flames - Burning velocity and its determination - Factors affecting burning velocity - Quenching, flammability and ignition - Flame stabilization in open burners

ENGINE COMBUSTION

Combustion in SI and CI engines - Stages of combustion in SI and CI engines - Normal combustion and abnormal combustion - Emissions from premixed combustion - Emission from non-premixed combustion - Control of emissions

Text Books

1	Ganesan.V, "Internal Combustion Engines", Tata McGraw-Hill, New Delhi.
2	Ramalingam.K.K, "Internal Combustion Engines - Theory and practice", SciTech Publications India Pvt. Ltd., Chennai, 2010.
3	Stephen.R.Turns, "An Introduction to Combustion concepts and applications", McGraw Hill Book Company, Boston, 3 rd Edition, 2011.
D 0	D 1

Reference Books

- Thipse.S.S, "Internal Combustion Engines", Jaico Publication House.
 Thipse.S.S, "Alternate Fuels", Jaico Publication House.
- 3 Heywood.J.B, "Internal Combustion Engine Fundamentals", McGraw Hill International, New York.
- 4 Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines"., Dhanpat Rai & Sons.
- 5 Domkundwar.V.M, "A course in Internal Combustion Engines", Dhanpat Rai & Sons.

S.No	Faculty Name	Designation	Department/ Name of the College	Email id		
1	S.PRAKASH	Assistant Professor (Gr-II)	Mech / AVIT	prakash@avit.ac.in		

COMPUTATIONAL FLUID	Category	L	T	P	Credit
DYNAMICS	EC(SE)	3	0	0	3

Preamble

This course introduces the finite difference methods as a means of solving different type of differential equations that arise in fluid dynamics. Fundamentals of numerical analysis, ordinary differential equations and partial differential equations related to fluid mechanics and heat transfer will be reviewed. Error control and stability considerations are discussed and demonstrated.

Prerequisite

- 1. Engineering Thermodynamics
- 2. Fluid Mechanics And Machinery

Course Objective

- 1 To understand basic properties of computational methods
- 2 To introduce Governing Equations of viscous fluid flows
- To learn computational solution techniques for time integration of ordinary differential equations
- 4 To introduce numerical modeling and its role in the field of fluid flow and heat transfer
- To enable the students to understand the various discretization methods, solution procedures and turbulence modeling.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Discuss the basic properties of computational methods	Understand
CO2.	Discuss the Governing Equations of viscous fluid flows	Understand
CO3.	Solve problems in computational solution techniques for time integration of ordinary differential equations	Analyze
CO4.	Solve problems in numerical modeling and its role in the field of fluid flow and heat transfer	Analyze
CO5.	Determine the various discretization methods, solution procedures and turbulence modeling.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO	PO	PO	PO	PO	PO7	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
CO	roi	2	3	4	5	6	107	8	9	0	1	2	1	2	3
CO1	S	M	M	L	M	L	-	-	-	-	-	L	L	1	1
CO2	S	M	M	L	L	L	-	-	-	-	-	-	L	ı	L
CO3	S	M	M	L	L	L	-	-	-	-	-	L	L	-	L
CO4	S	S	S	M	L	L	-	-	-	-	-	-	L	-	L
CO5	M	M	M	L	L	M	-	-	-	-	-	-	L	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Computational Fluid Dynamics, Advantages, Applications, Future of CFD. Problem set up-pre-process, Numerical solution – CFD solver

GOVERNING EQUATIONS FOR CFD

Introduction, the continuity equation, the momentum equation, the energy equation, the additional equations for turbulent flows, generic form of the governing equations for CFD, boundary conditions.

CFD TECHNIQUES

Derivation of finite difference equations – Simple Methods – General Methods for first and second order accuracy- Finite volume formulation for steady state One, Two and Three -dimensional diffusion problems

FLOW FIELD ANALYSIS

Finite volume methods -Representation of the pressure gradient term and continuity equation – Staggered grid – Momentum equations – Pressure and Velocity corrections – Pressure Correction equation, SIMPLE algorithm and its variants – PISO Algorithms.

TURBULENCE MODELS AND MESH GENERATION

Turbulence models, mixing length model, Two equation (k-€) models – High and low Reynolds number models – Structured Grid generation – Unstructured Grid generation – Mesh refinement – Adaptive mesh – Software tools.

Text Books

- 1 Versteeg, H.K., and Malalasekera, W.,"An Introduction to Computational Fluid Dynamics": The finite volume Method, Pearson Education Ltd. Third Edition 2014.
- 2 Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company Ltd.,

Reference Books

- John D. Anderson "Computational Fluid Dynamics The basics with Applications", McGrawHill International Editions.
- Anil W. Date, "Introduction to Computational Fluid Dynamics", Cambridge University Press, Reprinted 2010.
- 3 Yogesh Jaluria & Kenneth E. Torrance, "Computational Heat Transfer", CRC press, 2nd Edition.
- 4 John. F. Wendt, "Computational Fluid Dynamics An Introduction", Springer, Third Edition, 2013.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	S.PRAKASH	Assistant Professor (Gr-II)	Mech / AVIT	prakash@avit.ac.in
2				

					OGEN			Ca	ategor	y	L	T	P	Cre	edit	
			F	ENGINEERING					C(SE))	3	0	0	3	3	
cryoger	urse pro nic heat			knowl	edge o	of cryo	genic	refrige	eration	systen	ns, cryo	genic ins	strumen	tation aı	nd	
Prereq ENGIN	uisite NEERIN	NG TI	HERM	IODY	NAM	ICS										
Course	Object	tive														
1 T	o provi	de the	knowl	ledge (of evo	lution	of low	temp	erature	e scienc	e					
2 T	o provide knowledge on the properties of materials and gas separation systems															
3 T	o famil	iarize	with v	arious	vacu	um tec	hniqu	es sys	tems							
4 T	o provi	de des	ign as _l	pects o	of cryo	genic	storag	ge and	transfe	er lines						
5 T	o provi	de the	knowl	ledge (of adv	ances	in cry	ogenio	es							
Course	Outco	mes: (On the	succe	essful	compl	etion	of the	cours	e, stud	ents w	ill be abl	e to			
CO1.	Under	rstand	prope	rties of	f mate	rial at	cryog	enic te	mpera	tures			Under	stand		
CO2.	To un	dersta	nd the	prope	rties o	f mate	erials a	ınd gas	s separ	ration s	ystems		Under	stand		
CO3.	Know	about	vario	us vac	uum to	echniq	ues sy	stems					Apply			
CO4.	To un	dersta	nd the	cryog	enic re	efriger	ation	system	ns				Under	stand		
CO5.	Under	rstand	the cr	yogeni	c insti	umen	tation	and cr	yogen	ic heat	exchan	gers	Under	stand		
Mappi	ng with	Progr	ramm	e Out	comes	and I	Progra	amme	Specif	fic Out	comes					
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3	
CO1	S	L	3	M	<i>3</i>		L			<u> </u>	1	L	L			
CO2	S	M									L	L	L			
CO3	S	M					M					M	L			
CO4	S	M		M			L				S	M	L			
CO5	S	M		S	M		L				S	M	L		S	

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO CRYOGENIC SYSTEMS

Properties of materials at low temperature, Properties of Cryogenic Fluids - Air and Gas Liquefaction Systems: Thermodynamically ideal system, Production of low temperatures

Liquefaction systems for gases other than Neon, Hydrogen and Helium, liquefaction systems for Neon, Hydrogen and Helium - Cryogenic Refrigeration System

GAS SEPARATION AND GAS PURIFICATION SYSTEMS

The thermodynamically ideal separation system properties of mixtures, Principles of gas separation, air separation systems, Hydrogen, Argon, Helium air separation systems, Gas purification methods.

VACUUM TECHNIQUES

System for production of high vacuum such as mechanical, diffusion, ion and cryopumps - Cryogenics measurement systems - Temperature pressure, flow rate, liquid level measurement, Introduction to Cryocoolers.

CRYOGENIC FLUID STORAGE SYSTEMS

Introduction, Basic Storage vessels, inner vessel, outer vessel design, piping, access manways, safety device. Cryogenic insulations Vacuum insulation, gas filled powders and fibrous materials, solid foam, selection and comparison of insulations. Cryogenic fluid transfer systems. Transfer through uninsulated lines, vacuum insulated lines, porous insulated lines etc.

ADVANCES IN CRYOGENICS

Vortex tube and applications, Pulse tube refrigerator, Cryogenic Engine for space vehicles. Cryogenic Applications in gas industry, cryogenic fluids, space research, Cryobiology, food processing, electronics, nuclear and high energy physics, chemical processing, metal manufacturing, cryogenic power generation, medicine, analytical physics and chemistry.

mean	cine, analytical physics and chemistry.							
Text	Text Books							
1	Cryogenic Systems – R.F. Barron							
2	Cryogenic Engineering – R.B. Scott – D.Van Nostrand Company, 1959							
Refe	rence Books							
1	Cryogenic Process Engineering – K.D. Timmerhaus and T.M. Flynn, Plenum Press, New York, 1989							
2	High Vacuum Technology – A. Guthree – New Age International Publication							
3	Experimental Techniques in Low Temperature Physics – G.K. White – Oxford University Press, England, 1959							

Course Designers S.No Faculty Name Designation Department/Name of the College Email id 1 Dr.M.Prabhahar Asso Prof Mech / AVIT mprabhahar@avit.ac.in

			DES	IGN C	F TH	ERM	AL	Ca	ategor	y	L	T	P	Cro	edit	
			POWER EQUIPMENTS		E	EC(SE) 3		3	0		0					
Pream! This co		ovides	know	ledge (of desi	gn and	l analy	ysis of	the he	at exch	angers					
Prereq NIL	uisite															
Course	Object	tive														
1 T	o provi	de the	know	ledge	of heat	t transf	fer equ	iipmer	nt.							
2 T	o provi	de kno	wledg	ge on c	lesign	and an	nalysis	of th	e Shel	and tu	be heat	exchang	ger			
3 E	inable to	carry	out th	ne perf	orman	ice of l	heat ex	xchang	ger wit	h the e	xtended	l surfaces	S.			
4 T	o provi	de des	ign an	d anal	ysis of	f cooli	ng tov	vers.								
Course	Outco	mes: (On the	succe	essful	compl	etion	of the	cours	e, stud	ents wi	ill be abl	e to			
CO1.	Design and analysis of the parallel flow, counter flow heat exchangers.										S.	Understand				
CO2.	To understand the multi-pass and cross flow heat exchangers.											Understand				
CO3.	To de	velop	the Sh	ell and	d tube	heat e	xchan	ger.					Apply			
CO4.	То ор	timize	the p	erform	ance o	of heat	excha	nger					Understand			
CO5.	To de	sign a	nd ana	ılyze tl	ne coo	ling to	wers						Understand			
Mappi	ng with	Prog	ramm	e Out	comes	and F	Progra	amme	Speci	fic Out	comes		•			
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3	
CO1	S	L		M		<u> </u>	L	<u> </u>		<u> </u>	1		L		3	
CO2	S	M											L			
CO3	S	M					M						L			
CO4	S	M		M			L						L			
CO5	S	M		S	M		L						L		S	
	I		ım; L·	1	<u> </u>]		l			l .	<u> </u>	l	l	<u> </u>	

CLASSIFICATION OF HEAT EXCHANGERS

Introduction, Recuperation & Regeneration – Tubular heat exchangers: double pipe, shell & tube heat exchanger, Plate heat exchangers.

BASIC DESIGN METHODS OF HEAT EXCHANGER

Introduction, Basic equations in design, Overall heat transfer coefficient – LMTD method for heat exchanger analysis – parallel flow, counter flow, multi-pass, cross flow heat exchanger design calculations.

SHELL & TUBE HEAT EXCHANGERS

Tube layouts for exchangers, baffle Heat exchangers, calculation of shell and tube heat exchangers – shell side film coefficients, Shell side equivalent diameter, the true temperature difference in a 1-2 heat exchanger, shell side pressure drop, tube side pressure drop, Analysis of performance of 1-2 heat exchanger, and design calculation of shell & tube heat exchangers.

CONDENSATION OF SINGLE VAPORS AND EXTENDED SURFACES

Evaporators and Reboilers, Vaporizing processes, forced circulation vaporizing exchangers, natural circulation vaporizing exchangers, calculations of a reboiler.

Longitudinal fins, calculation of a double pipe fin efficiency curve, calculation of a double pipe finned exchanger.

DIRECT CONTACT HEAT EXCHANGER

Cooling towers, relation between wet bulb & dew point temperatures, classification of cooling towers, cooling tower internals, Heat balance, heat transfer by simultaneous diffusion and convection. Analysis of cooling tower requirements. Calculation of cooling tower performance.

Text Books

- 1 Process Heat Transfer D.Q. Kern, TMH.
- Heat Exchanger Design A.P.Fraas and M.N. Ozisick. John Wiely & sons, New York.

Reference Books

- 1 W.F. Stoecker, Design of Thermal Systems McGraw-Hill
- 2 Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization Wiley
- 3 N.V. Suryanarayana, Design & Simulation of Thermal Systems MGH.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Mr. N. Fedal Castro	Asst Prof - II	Mech / AVIT	fedal@avit.ac.in

		EAT :				S		Cat	egory	L	7	Γ	P		Credit
		SIGN				SIS				3	()	0		3
the gene exch knov	Exchaworld ration.	for tra Power are or of desi	ansfer r and ne of ign, co	ring henergethe men	neat from the second se	rom of the sin portai	one so ignific nt equ	ource cant el ipmer	of ener lements nts appl	rgy in of eve ied eve	to and eryday erywh	other f y scena ere. Th	for the pario in the inis cours	purpose ne world se provid	of power and heat es a deep for every
Cours	se Obj	jectiv	e												
1	To inculcate a thorough knowledge on the fundamentals of heat exchangers and its applications.														
2	To provide thorough procedure for design of shell and tube heat exchangers.														
3	To provide thorough design procedure of condensers.														
4 1	To detail on the different types of compact heat exchangers, heat pipes and its applications.														
	To de during				ods a	nd m	eans	of an	alysing	g heat	excl	nangei	rs for st	resses c	occurring
Cours	Course Outcomes: On the successful completion of the course, students will be able to														
CO1.		ct a su ysing		• •				_	for an	applic	cation	ı duly	Analy	/ze	
CO2.		gn a s cular					xchar	nger v	with re	ferenc	ce to	a	Apply	y	
CO3.	Desi	gn a c	onde	enser	for a	n ind	ustria	ıl app	licatio	n.			Apply	y	
CO4.		ropria transf	•			ype o	f con	npact	heat e	xchan	ger f	or an	Analy	yze	
CO5.		lyse a		gned	heat	excha	anger	for s	uitabil	ity in	a pre	ferrec	l Analy	yze	
Mapp	ing w	ith P	rogra	amm	e Out	tcom	es an	d Pr	ogram	me S	pecif	ic Ou	tcomes	ļ	
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	M	M	M	S	S	-	S	S	ı	-	-	-	L	ı	-
CO2	M	M	S	S	S	-	S	S	L	-	-	L	L	-	-
CO3	M	M	S	S	S	-	S	S	L	-	-	L	L	-	-

CO4	M	M	M	S	S	ı	S	S	-	-	1	1	L	-	-
CO5	M	M	M	S	S	-	S	S	-	-	-	L	L	1	-

S- Strong; M-Medium; L-Low

SYLLABUS

FUNDAMENTALS OF HEAT EXCHANGERS

Review of heat transfer modes and governing laws and equations. Introduction to heat exchangers purpose, usage and applications of heat exchangers. Principles and methods of working of heat exchangers, Classification of heat exchangers – based on process function, flow arrangements, design, and based on applications. Recuperative and Regenerative heat exchangers.

Parameters for basic design of heat exchanger - overall heat transfer coefficient, LMTD method for heat exchanger analysis for parallel, counter, multi-pass and cross-flow heat exchanger, e-NTU method for heat exchanger analysis, TEMA code, J-factors.

DESIGN OF SHELL AND TUBE HEAT EXCHANGERS

Shell and Tube heat exchanger for single phase heat transfer – types, features of shell and tube heat exchanger, thermal design considerations, fouling considerations, selection of fluids for tube and shell side, process design procedure, problems on design of shell and tube heat exchanger.

DESIGN OF CONDENSERS

Shell and tube heat exchanger for two phase heat transfer – physical mechanism of condensation, types of condensers, condenser design, de-superheating and sub-cooling. Reboiler – types and application.

COMPACT HEAT EXCHANGERS & HEAT PIPES

Enhancement of heat transfer compact heat exchangers, extended surface heat transfer, extended surface heat exchangers, performance evaluation of heat transfer enhancement technique, pinch analysis. Finned tube heat exchanger, plate fin heat exchanger, pressure drop and multi stream analysis, phase change heat exchangers.

Heat Pipes, heat pipe heat exchangers. Regenerators, Fixed bed regenerator analysis, design and simulation of regenerator, Problems in fixed bed regenerator. Micro heat exchanger – introduction, Micro scale heat transfer, micro channel, micro heat exchanger.

ANALYSIS OF HEAT EXCHANGERS

Stress in tubes – header sheets and pressure vessels – thermal stresses, shear stresses – types of failure, buckling of tubes, flow induced vibration. Heat exchanger network synthesis, heat exchanger testing.

Refer	Reference Books									
1	Dutta B.K. "Heat Transfer-Principles and Applications", PHI Pvt. Ltd., New Delhi, 1st ed. 2006.									
2	D. Q. Kern, Process Heat Transfer, McGraw-Hill Book Company, Int. ed. 1965.									
3	John E. Hesselgreaves, "Compact heat exchangers: selection, design, and operation", Elsevier science Ltd, 2001.									
4	Indian Standard (IS: 4503-1967): Specification for Shell and Tube Type Heat Exchangers, BIS 2007, New Delhi.									

Faculty Name	Designation	Department/Name of the College	Email id
N.LAKSHMINARAYANAN	ASSOCIATE PROFESSOR	MECH/AVIT	nlakshminarayanan@avit.ac.in

Category L Т Credit POWER PLANT **ENGINEERING** EC(SE) 3 0 0 3 **Preamble** Power Plant Engineering is the subject involving study of applying the thermal engineering concepts and machineries in the process of power generation. Power Plants are the backbone of a country involving in the generation of electric power. **Prerequisite - Thermal Engineering Course Objective** To understand the objectives of power plants in a country's electrical power requirement. 1 To understand the operational methods of power generation using different energy sources. 2 To provide the knowledge of instrumentation involved in the operation and control of power plants 3 To estimate the cost and economics of power generation in different types of power plants. To inculcate the knowledge of environmental impact of power plants on the society. 5 Course Outcomes: On the successful completion of the course, students will be able to Understand the methods of power generation using different energy Understand CO sources 1. To state the instrumentation and control systems for a power plant Understand CO 2. To calculate the cost of power generation for a typical power plant Apply CO 3. To infer the environmental impacts of power plants on the society Apply CO 4. Prepare a layout for different power plants Apply CO 5. **Mapping with Programme Outcomes and Programme Specific Outcomes** PO PO PO PO PO PO PO PO PO PO **PSO PSO** CO PO10 PO12 PSO3 1 2 3 4 5 6 7 8 9 11 1 2 S M M M M M CO1 S M M M M S M CO2 M S S S M S M M CO3 S S S S S M M M M M CO4 S S S S S S M S CO₅

S- Strong; M-Medium; L-Low

INTRODUCTION

Power Generation: Global Scenario, Present status of power generation in India, Role of private and governmental organizations, Load shedding, Carbon credits, Power reforms, concept of cascade efficiency.

General layout of modern power plant with different circuits, working of thermal power plant, coal classification, coal, ash and dust handling, selection of coal for Thermal Power Plant, FBC boilers, high pressure boiler, cogeneration power plant (with numerical)

Steam Condenser: Necessity of steam condenser, Classification, Cooling water requirements, Condenser efficiency, Vacuum efficiency, Cooling towers, air Leakage, Effects of Air Leakage on condenser performance, (Numerical Treatment)

HYDROELECTRIC AND NUCLEAR POWER PLANTS

HEPP: Introduction, Plant Layout, Site Selection, Advantages and Disadvantages of HEPP, Hydrograph, Flow duration curve, Mass Curve, Classification of HEPP with layout.

NPP : Elements of NPP, Nuclear reactor & its types, fuels moderators, coolants, control rod, classification of NPP, N-waste disposal

DIESEL & GAS TURBINE POWER PLANT

DEPP: Plant Layout, Diesel Engine Power Plant Performance Analysis, application, selection of engine size, advantages & disadvantages of diesel power plant.

GTPP: Introduction, fuels, materials selection for GTPP, Brayton Cycle analysis, Thermal Efficiency, Work ratio, maximum & optimum pressure ratio, Actual cycle effect of operating variables on thermal efficiency, inter-cooling reheating, & regeneration cycle, Open, Closed & Semi Closed cycles Gas Turbine Plant, combined cycle plant (Numerical Treatment).

NON-CONVENTIONAL POWER PLANTS

Wind Power plant: Introduction, wind availability measurement, types of wind machines, site selection, and wind power generation.

Solar Power Plant : Introduction, components ,Types of Collectors & Solar Ponds, Low & High Temperature Solar Power Plant. Photovoltaic Power System, Heliostat

Tidal, OTEC, geothermal, magneto hydrodynamics, fuel cell, hybrid power plants, Challenges in commercialization of Non-Conventional Power Plants.

INSTRUMENTATION, ECONOMICS AND ENVIRONMENTAL IMPACT

Power Plant Instrumentation Layout of electrical equipment, generator, exciter, short circuits & limiting methods, switch gear, circuit breaker, power transformers, methods of earthing, protective devices & Control system used in power plants, Control Room.

Economics of Power Generation: Introduction, Cost of electric energy, Fixed and operating cost, (with

numerical treatment), Selection and Type of generation, Selection of generation equipment, Performance and operation characteristics of power plants and Tariff methods.

Environmental impact due to power plants. Environmental aspects, introduction, constituents of atmosphere, different pollutants due to thermal power plants and their effects of human health, Environmental control of different pollutant such as particulate matter, Oxides of sulphur, nitrogen, global warming & green house effect, thermal pollution of water & its control. Noise pollution by power plants.

Text Books

- 1 E.I.Wakil, —Power Plant Engineering, McGraw Hill Publications New Delhi
- 2 P.K.Nag, —Power Plant Engineering, McGraw Hill Publications New Delhi
- **3** K K Ramalingam , Power Plant Engineering, SCITECH Publications Pvt Ltd.
- 4 Domkundwar & Arora, —Power Plant Engineering, Dhanpat Rai & Sons, New Delhi

Reference Books

- 1 R.K.Rajput, —Power Plant Engineering, Laxmi Publications New Delhi
- 2 R. Yadav, —Steam and Gas Turbines , Central Publishing House, Allahabad
- **3** G.D.Rai, Non-Conventional Energy Sources Khanna Publishers, Delhi
- 4 S.P.Sukhatme, —Solar Energyl Tata McGraw-Hill Publications, New Delhi

S.N o	Faculty Name	Designation	Department/Name of the College	Email id
1	N.Lakshminarayanan	Associate Professor	MECH / AVIT	nlakshminarayanan@avit.ac.in
2	K.Surendar Babu	Associate Professor	MECH / AVIT	surendrababu@avit.ac.in

		R	EFRI(GERA	TION AN	D AIR	Ca	tegory	y :	L	T	P	Cre	edit	
			C	ONDI	TIONING	}	E	C(SE)		3	0	0		3	
				derlyii	ng principl	es of op	eratio	n in dif	fferent	Refrige	eration &	Air coi	nditionii	ng	
Prereq NIL	uisite														
Course	Object	ive													
1 7	o impar	t knov	vledge	on ref	frigeration	cycles a	and me	ethods	to imp	rove pe	rforman	ce			
2 7	o famil	iarize	the co	mpone	nts of refri	geration	n syste	ms							
3 7	o Perfo	rm psy	chron	netric o	calculation	S									
4 T	o introc	luce ai	r cond	litionir	ng systems										
5 Т	o know	the ap	plicat	ions of	refrigerat	ion and	air coi	ndition	ing sys	stems					
Course	Outco	mes: (On the	succe	ssful com	oletion	of the	course	e, stud	ents wi	ll be abl	e to			
CO1.	Carry	out ar	nalvsis	of ref	rigeration o	eveles						Under	stand		
							ir-con	ditioni	ing and	l basic (design				
CO2.	consid	Understand the principles refrigeration of air-conditioning and basic design considerations. Understand													
	Perform psychrometric calculations, humidity control and analysis of air- conditioning processes Apply														
CO3.					alculations	s, humic	lity co	ntrol a	nd ana	lysis of	air-	Apply			
CO3.	condi	tioning	g proce	esses	door envir				nd ana	lysis of	air-	Apply			
	Apply	the co	g proce	esses es of in		onmenta	al com	fort.			air-				
CO4.	Apply Know	the co	g proce oncept arious	esses es of in applic	door envir	onmenta	al com	fort.	conditi	oning	air-	Apply			
CO4.	Apply Know	tioning the correction the variable Programmer The variable Programmer Progra	oncept arious PO	esses as of in applic e Outo	door envir	onmenta efrigera Progra	antion and another PO	fort. nd air o	conditi	oning comes	PO12	Apply Under	stand	PSO 3	
CO4. CO5. Mappi	Apply Know	the correction the correction the variation that th	oncept arious	esses s of in applic	door envir	onmenta efrigera Progra	al com	fort. nd air o	conditi	oning		Apply	stand	PSO 3	
CO4. CO5. Mappi CO	Apply Know ng with PO1	tioning the control the variation the variation the variation the variation that the vari	oncept arious PO	esses as of in applic e Outo	door envir	efrigera Progra	antion and another PO	fort. nd air o	conditi	oning comes	PO12	Apply Under	stand		
CO4. CO5. Mappi CO CO1	Apply Know ng with PO1 S	tioning the control the variation the variation the variation the variation the variation the variation the variation the variation the variation the variation the variation the variation the variation that variation th	oncept arious PO	esses as of in applic e Outo	door envir	efrigera Progra	antion and another PO	fort. nd air o	conditi	oning comes	PO12	Apply Under	stand		
CO4. CO5. Mappi CO CO1 CO2	Apply Know PO1 S S	tioning the control the variation that the variatio	procept arious PO 3	esses as of in applic PO 4 L	door envir	efrigera Progra	antion and another PO	fort. nd air o	conditi	oning comes	PO12	Apply Under	stand		

S- Strong; M-Medium; L-Low

SYLLABUS

REFRIGERATION CYCLE

Review of thermodynamic principles of refrigeration. Carnot refrigeration cycle – Vapour compression refrigeration cycle – use of P.H. charts – multistage and multiple evaporator Systems – cascade system – COP comparison. Air Refrigeration cycles.

REFRIGERANTS AND SYSTEM COMPONENTS

Compressors – reciprocating and rotary (elementary treatment), Types of condensers, vaporators, cooling towers – Functional aspects. Refrigerants – properties – selection of refrigerants, Alternate Refrigerants, Cycling controls.

PSYCHROMETRY

Psychrometric processes use of psychrometric charts – Grand and Room Sensible Heat Factors – bypass factor – air washers, requirements of comfort air conditioning, summer and Winter Air conditioning.

AIR CONDITIONING SYSTEMS

Cooling load calculation working principles of – Centralized Air conditioning systems, Split, Ductable split, Packaged Air conditioning, VAV & VRV Systems. Duct Design by equal friction method, Indoor Air quality concepts.

UNCONVENTIONAL REFRIGERATION CYCLES

Vapor Absorption system – Ejector jet, Steam jet refrigeration, thermo electric refrigeration. APPLICATIONS – ice plant – food storage plants – milk – chilling plants.

Text Books

- 1 Manohar Prasad, "Refrigeration and Air Conditioning", Wiley Eastern Ltd., 1983.
- 2 Arora C.P., "Refrigeration and Air Conditioning", Tata McGraw Hill, New Delhi, 1988.

Reference Books

- 1 Roy. J. Dossat, "Principles of Refrigeration", Pearson Education 1997.
- 2 Jordon and Priester, "Refrigeration and Air Conditioning", Prentice Hall of India Pvt.Ltd., New Delhi, 1985.
- 3 Stoecker N.F. and Jones, "Refrigeration and Air Conditioning", TMH, New Delhi,1981.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.M.Prabhahar	Assoc Prof	Mech / AVIT	mprabhahar@avit.ac.in
2				

			TUI	RBON	IACH	INER	Υ	Ca	ategor	y	L	T	P	Cr	edit
								E	C(SE))	3	0	0	í	3
Preamb This cou		o expl	ore the	e strate	egies i	n Mac	hineri	es and	its dy	namic	analysis	S			
Prerequ		_			.		•		.						
Engine			<u>odyna</u>	mics,	Fluid	Mech	anics	and N	<u> 1achin</u>	ery					
Course			1	c ci	. 1	1.									
1	o learn the principles of fluid machinery.														
$2 \mid T$	o under	stand	variou	s fans	and b	lowers	S.								
3 T	o under	stand	the co	ncept	of con	press	ors.								
4 T	o learn	the co	ncept	of axia	al flow	comp	ressoi	S.							
5 T	o under	stand	the co	ncept	of vari	ous tu	rbines	•							
	0.4		.		C 1			641		4 1		,,,			
Course												ill be abl			
CO1.	Know transfe						l mech	nanics	conce	pts, and	d energy	y	Reme	mber	
CO2.	To un	dersta	nd the	design	n conc	epts a	nd imp	ortan	ce of d	ynamio	e machi	neries	Under	stand	
CO3.	To un analys				ıstruct	ional o	details	of cor	npress	ors and	l perfor	rmance	Under	stand	
CO4.	To kn done,								ocity c	liagran	ns for w	ork	Apply		
CO5.		ow at	out be	ench n	narking				ocity c	liagran	ns for b	lade	Apply		
Mappir						and I	Progra	amme	Speci	fic Out	comes				
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	M								M				M		
CO2	M			L					M				L		
CO3	M				L			L	M				L		
CO4	M	M		L	S				M				M		
CO5	M								M				M		
								•				•			

SYLLABUS

BASIC PRINCIPLES

Energy transfer between fluid and rotor-classification of fluid machinery,-dimensionless Parameters-specific speed-applications-stage velocity triangles-work and efficiency

CENTRIFUGAL FANS AND BLOWERS

Types- stage and design parameters-flow analysis in impeller blades-volute and Diffusers, losses, characteristic curves and selection, fan drives and fan noise.

CENTRIFUGAL COMPRESSOR

Construction details, impeller flow losses, slip factor, diffuser analysis, losses and Performance curves

AXIAL FLOW COMPRESSOR

Stage velocity diagrams, enthalpy-entropy diagrams, stage losses and efficiency, work Done simple stage design problems and performance characteristics.

AXIAL AND RADIAL FLOW TURBINES

Stage velocity diagrams, reaction stages, losses and coefficients, blade design Principles, testing and performance characteristics

Text Books

- Yahya, S.M., Turbines, Compressors and Fans, Tata McGraw-Hill Publishing Company, 1996.
- 2 Ganesan, V., Gas Turbines, Tata McGraw Hill Pub. Co., 1999.

Reference Books

- 1 Bruneck, Fans, Pergamom Press, 1973.
- 2 Shepherd, D.G., Principles of Turbo machinery, Macmillan, 1969.

Course Designers

S.No	Faculty Name	Designatio Department/Name of the College		Email id		
1	Mr.R.Mahesh	Asst.Prof Gr-II	Mech / AVIT	Mahesh@avit.ac.in		

AIRCRAFT STRUCTUR	Category	L	T	P	Credit
	EC - SPL	3	0	0	3

This subject provides knowledge on the aircrafts basic structural load and the behaviours of the structure under loading condition. It will also provide the detailed study on the failure theory which provides the student a deep knowledge on designing a safe structure.

Course Objectives

1.	To remember the various methods ofjoints in the structural member.
2.	To provide the students an understanding on the static analysis of determinate and indeterminate structure.
3.	To understand the various energy methods.
4.	To apply the knowledge on structural design using different failure theories.
5.	To analyse the various industrial and thermal stresses.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Generalize the various bending of different types of member under loading.	Remember
CO2.	Calculate the Shear flow in aircraft members related to open section.	Understand
CO3.	Calculate the columns in aircraft members.	Understand
CO4.	Describe the various types of buckling of plates and the deformation of it.	Apply
CO5.	Relate the various real time problems in industries.	Analyse

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO	PO	PO	PO	РО	PO	PO	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1.	S	L	S	-	-	M	L	-	-	-	-	S	L	S	L
CO 2.	S	S	M	M	-	-	-	-	-	-	-	-	M	L	-
CO 3.	S	S	M	L	-	L	-	-	L	-	-	L	L	-	-
CO 4.	S	M	M	S	M	-	-	-	-	-	-	-	S	S	S

CO	S	S	S	M	-	-	-	-	-	 -	M	S	S	S
5.														

S- Strong; M-Medium; L-Low

Syllabus

UNIT – I	STATICALLY DETERMINATE& INDETERMINATE STRUCTURES	9

Plane truss analysis – method of joints – method of sections – method of shear – 3-D trusses – principle of super position, Clapeyron's 3 moment equation and moment distribution method for indeterminate beams.

UNIT – II | STRESS ANALYSIS OF WING AND FUSELAGE

10

Loads on an aircraft –V-n diagram – shear force and bending moment distribution over theaircraft wing and fuselage – shear flow in thin-webbed beams with parallel and non-parallel flanges – complete tension field beams – semi-tension field beam theory.

UNIT – III | COLUMNS

10

Euler's column curve – inelastic buckling – effect of initial curvature – the South well plot – columns with eccentricity – use of energy methods – theory of beam columns – beam columns with different end conditions – stresses in beam columns.

UNIT – IV UNSYMMETRICAL BENDING

9

Bending of symmetric beams subject to skew loads - bending stresses in beams of unsymmetrical sections – generalized 'K' method, neutral axis method, and principal axis method.

UNIT – V INDUCED STRESSES

7

Thermal stresses – impact loading – Fatigue – Creep - Stress Relaxation.

TEXT BOOK:

- 1. Timoshenko and Gere, "Mechanics of Materials", Tata McGraw Hill, 1993.
- 2. Megson T M G, "Aircraft Structures for Engineering students" Elsevier Science and Technology, 2007
- 3. Peery and Azar, "Aircraft Structures

REFERENCES:

- 1. Donaldson, B.K., "Analysis of Aircraft Structures An Introduction", McGraw Hill, 1993.
- 2. Bruhn E F, "Analysis and Design of Flight Vehicle Structures", Tri-State Off-set Company, USA,1985
- 3. Peery, D.J. and Azar, J.J., "Aircraft Structures", 2nd Edition, McGraw Hill, N.Y, 1999.

(Course Designers:											
	S.No	Name of the Faculty	Designation	Department/College								
	1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in							
	2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in							

	Category	L	T	P	Credit
AERO ENGINE LAB	CORE	0	0	4	2

This course provides sufficient knowledge and creates a base for the students to develop concepts of working independently in aero engines.

Course Objectives

1	To understand the basic concepts of aero engines used in small and large aircrafts.
2	To provide practical knowledge on working of components of aero engines.
3	To develop analytical skills for trouble shooting.
4	To develop confidence in working independently on an aircraft engine.
5	To develop personality and an attitude of team work.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and identify components.	Remember
CO2.	Explain working of internal combustion engines.	Understand
CO3.	Employ analytical skills in finding faults and mal-functioning in	Apply
	operation.	
CO4.	Categorise the troubles and pin point the technical malfunction.	Analyze
CO5.	Evaluate and modify the system to meet certain requirement.	Evaluate
CO6.	Formulate and design a new concept for a better output.	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	РО	PO2	РО	РО	РО	PO	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
	1		3	4	5	6	7	8	9	0	1	2	1	2	3
CO	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
1.															
CO	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
2.															
CO	S	S	S	S	-	-	-	-	-	-	-	-	M	M	M
3.															
CO	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
4.															
CO	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
5.															
CO	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
6.															

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

1.	Identification of older and newer versions of piston engines and their components.
2.	Maintenance aspect – Cleaning, Visual Inspection and Dimensional checks.
3.	Crankshaft and its parts – dimensional checks and deformation analysis
4.	Fuel and oil systems - maintenance and trouble shooting.

5.	Reassembly of dismantled components.						
6.	Identification of older and newer versions of jet engine and their components.						
7.	Maintenance aspect – Cleaning, Visual Inspection and Dimensional checks.						
8.	Non Destructive Testing of components.						
9.	Study of Ignition System of jet engine.						
10.	Jet Engine –Reassembly of dismantled components.						
REFEREN	REFERENCES:						
AERO EN	AERO ENGINE LAB MANUAL						

Cours	Course Designers:									
S.No	Name of the Faculty	Designation	Department/College							
1	Sanjay Singh	Associate Professor		sanjay@vmkvec.edu.in						
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in						

	Category	L	T	P	Credit
AERODYNAMICS LABORATORY	LAB- SPL	0	0	4	2

The aim of the subject is to provide knowledge in wind tunnel testing

Course Objectives

1	To study experimentally the aerodynamic forces on different bodies at low speeds
2	To familiarize with the Calibration of a subsonic Wind tunnel
3	To familiarize with Pressure distribution over a smooth circular cylinder
4	To familiarize with the Pressure distribution over a symmetric aerofoil
5	To familiarize with the Flow visualization studies in subsonic flows

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Collect the knowledge of various flow equations.	Remember
CO2.	Implement the working concepts of various wind tunnel.	Understand
CO3.	Utilize the knowledge and compute the results for Pressure distribution over a	Apply
	smooth circular cylinder.	
CO4.	Implement the concept and compute relevant results for Pressure distribution	Apply
	over a symmetric aerofoil	
CO5.	Compute the performance of Flow visualization studies in subsonic flows.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	-	-	-	-	-	-	-	-	-	-	-	L	L	L
CO2.	M	L	M	-	-	-	-	-	-	-	-	-	L	L	L
CO3.	S	S	S	S	1	-	1	1	1	-	-	-	M	M	M
CO4.	M	S	-	-	-	-	-	-	-	-	-	-	M	M	M
CO5.	S	S	S	-	-	-	-	-	-		-	S	S	S	S

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS:

- 1. Application of Bernoulli's Equation venture meter and orifice meter.
- 2. Frictional loss in laminar flow through pipes.
- 3. Frictional loss in turbulent flow through pipes.
- 4. Calibration of a subsonic Wind tunnel.
- 5. Determination of lift for the given airfoil section.
- 6. Pressure distribution over a smooth circular cylinder.
- 7. Pressure distribution over a rough circular cylinder.
- 8. Pressure distribution over a symmetric aerofoil.
- 9. Pressure distribution over a cambered aerofoil.
- 10. Flow visualization studies in subsonic flows.

Cours	se Designers:			
S.No	Name of the Faculty	Designation	Department/College	
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in

AERODYNAMICS	Category	L	T	P	Credit
AERODINAMICS	EC-SPL	3	0	0	3

This subject provides a detailed description of the methodology and the behaviour of airflow both internal and external in compressible flow regime with particular emphasis on supersonic flows. It will provide students an in-depth knowledge of the compressible flow and also about the shock waves. With this knowledge the students can also apply the experimental techniques for high speed flows.

Course Objectives

1.	To understand the fluid mechanics concepts for advanced applications
2.	To study two dimensional flows in aerodynamics
3.	To study ideal flows over wings
4.	To Study the high speed flows over airfoils, wings and airplane configurations
5.	To Study the boundary layer interaction

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Gather the knowledge of fundamental principles of fluid mechanics.	Remember
CO2.	Use the concepts of two dimensional flows in aerodynamics.	Understand
002.	ose the concepts of two difficulties in acroay manness.	o iraci staria
CO3.	Implement the concept and compute relevant results for ideal flow	Apply
	over wings.	
CO4.	Compute the results for high speed flows over airfoils and wings by	Apply
	applying various methods	
CO5.	Implement the performance of experimental techniques for high	Analyze
	speed flows analysis	

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1 .	L	L	-	-	-	ı	-	-	-	-	-	L	L	L	L
CO2	M	M	M	L	-	-	-	-	-	-	-	-	L	L	L
CO3	M	S	S	M	M	i	ı	-	-	-	-	-	M	M	S
CO4	S	M	S	S	S	-	-	-	-	-	-	L	S	S	S

•														
CO5	M	S	S	S	S	ı	-	1	L	 ı	M	S	S	S
•														

S- Strong; M-Medium; L-Low

Syllabus

UNIT - I INTRODUCTION TO LOW SPEED FLOW 9

Euler equation, incompressible Bernoulli's equation. circulation and vorticity, Green's Lemma and Stoke's theorem, Barotropic flow, Kelvin's theorem, Reynolds number, streamline, stream function, irrotational flow, potential function, Equi-potential lines, elementary flows and their combinations

UNIT – II TWO DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW

Ideal Flow over a circular cylinder, D'Alembert's paradox, Magnus effect, Kutta-Joukowski's theorem, starting vortex, Kutta condition, real flow over smooth and rough cylinder

UNIT – III SUBSONIC WING THEORY 9

Vortex filament, Biot and Savart law, bound vortex and trailing vortex, horse shoe vortex, lifting line theory and its limitations, various types of wings and its applications

UNIT – IV HIGH SPEED FLOW OVER AIRFOILS, WINGS AND AIRPLANE CONFIGURATION 9

Critical Mach number, Drag divergence Mach number, Shock Stall, Supercritical Airfoil Sections, Transonic area rule, Swept wing, Airfoils for supersonic flows, Lift, drag, Pitching moment and Centre of pressure for supersonic profiles, Shock-expansion theory, wave drag, supersonic wings, Design considerations for supersonic aircraft- aerodynamic heating.

UNIT - V EXPERIMENTAL TECHNIQUES FOR HIGH SPEED FLOWS 9

Wind tunnels for transonic, Supersonic and hypersonic flows, shock tube, Gun tunnels-peculiar problems in the operation of hypersonic tunnels - Supersonic flow visualization methods

TEXT BOOK:

- 1. Anderson, J. D, Modern Compressible Flow, McGraw-Hill & Co., 2002.
- 2. Rathakrishnan., E, Gas Dynamics, Prentice Hall of India, 2004.

REFERENCES:

- 1. Shapiro, A. H., Dynamics and Thermodynamics of Compressible Fluid Flow, Ronald Press, 1982.
- 2. Zucrow, M. J. and Anderson, J. D., Elements of Gas Dynamics, McGraw-Hill & Co., 1989.
- 3. Oosthuizen, P.H., & Carscallen, W.E., Compressible Fluid Flow, McGraw-Hill & Co., 1997.

(Course Designers:											
	S.No	Name of the Faculty	Designation	Department/College	Mail ID							
	1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in							
	2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in							

	Category	L	T	P	Credit
AEROSPACE PROPULSION LAB	CORE	0	0	4	2

This course provides and creates a base for the students to develop concepts of working independently in aero engines.

Course Objectives

1	To understand the basic concepts of a propulsion system.
2	To provide practical knowledge on working of components of propulsion system.
3	To develop analytical skills for fault finding.
4	To develop confidence in working on an aircraft engine.
5	To develop an attitude of team work.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and identify components.	Remember
CO2.	Explain working of internal combustion engines.	Understand
CO3.	Employ analytical skills in finding faults in operation.	Apply
CO4.	Categorise the troubles and pin point the technical malfunction.	Analyze
CO5.	Evaluate and modify the system.	Evaluate
CO6.	Formulate and design a new modified engine.	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3.	S	S	S	S	-	-	-	-	-	-	-	-	M	M	M
CO4.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO6.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

1.	Study, dismantling and identification of types of piston engine and their components.					
2.	Piston Engine Components – Cleaning, Visual Inspection and Dimension checks.					
3.	Study of Camshaft operation, firing order and magneto, valve timing.					
4.	Study of various auxillary systems of piston engine.					
5.	Piston Engine –Reassembly of dismantled components.					
6.	Study, dismantling and identification of types of jet engine and their components.					
7.	Jet Engine Components – Cleaning, Visual Inspection and Dimension checks.					
8.	Non Destructive Testing of components.					
9.	Study of various auxillary systems of jet engine.					
10.	Jet Engine –Reassembly of dismantled components.					
DEFEDEN	DEFEDENCES.					

REFERENCES

AEROSPACE PROPULSION LAB MANUAL

Course Designers:										
S.No	Name of the Faculty	Designation	Department/College							
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in						
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in						

A ED OCDA CE DDODIN CION	Category	L	T	P	Credit
AEROSPACE PROPULSION	CORE	3	0	0	3

This course provides knowledge and creates a base for the students to develop a strong concept of propulsive device used in aerospace propulsion.

Course Objectives

1	To understand the basic concepts of propulsion.
2	To provide an in-depth study of propulsion subject.
3	To develop analytical skills for selection of propulsive method.
4	To develop criticizing skills for modification and designing of components.
5	To develop entrepreneurial skills.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and identification of components of an	Remember
	engine.	
CO2.	Explain working of internal combustion engines.	Understand
CO3.	Employ analytical skills for trouble shooting.	Apply
CO4.	Categorise the propulsive devices and estimate reliability.	Analyze
CO5.	Evaluate and modify the system.	Evaluate
CO6.	Formulate and design a new modified aero engine	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO	PO2	РО	PO	PO	РО	PO	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO
	1		3	4	5	6	7	8	9	0	1	2	1	2	3
CO1 .	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3	S	S	S	S	-	-	-	-	-	-	-	-	M	M	M
CO4	S	S	S	S	ı	-	-	-	-	-	-	-	S	S	S
CO5	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

CO6	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

UNIT I	UNIT I FUNDAMENTALS OF ENGINES								
History and classifications of Aero engines, Working of gas turbine engine - Thrust equation - Efficiency,									
Specific fuel of	Specific fuel consumption, Methods of thrust augmentation – Characteristics of propeller, turboprop, turbofan and								
turbojet engines.									
LINITE II	INI ETC AND NOTH EC	7							

UNIT II INLETS AND NOZZLES

Subsonic inlets- External and internal flow pattern - inlet performance criterion -Boundary layer separation -Supersonic inlets-Theory of flow in isentropic nozzles - Losses in nozzles - Interaction of nozzle flow with adjacent surfaces - Thrust reversal

UNIT III COMPRESSORS, TURBINES AND COMBUSTION CHAMBERS

12

Principle of operation of centrifugal compressor - Work done and pressure rise - Elementary theory of axial flow compressor - Elementary theory of axial flow turbine- blade cooling - Classification of combustion chambers -Important factors affecting combustion chamber design – Combustion process

UNIT IV ROCKETS - SOLID, LIQUID AND HYBRID

12

Selection criteria of solid propellants - propellant grain design considerations - Progressive, Regressive and neutral burning in solid rockets, Liquid propellant rockets - selection of liquid propellants - various feed systems for liquid rockets -cryogenic techniques - Thrust vector control - Cooling in liquid rockets - advantages of liquid rockets over solid rockets - introduction to hybrid propulsion - advantages and limitations of hybrid propulsion

ADVANCED PROPULSION TECHNIQUES

Electric rocket propulsion - Plasma as a fluid- Diffusion in Partially Ionized gases - Ion propulsion - Nuclear rocket, Solar Sail

TEXT BOOK:

- 1. Hill, P.G. & Peterson, C.R, Mechanics & Thermodynamics of Propulsion, Addison Wesley Longman INC, 1999.
- 2. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 8th Edition, 2010.

REFERENCES:

- 1. Ahmed F. El-Sayed, Aircraft Propulsion and Gas turbine engines, CRS Press, 2008
- 2. SaeedFarokhi, Aircraft Propulsion, John Wiley & Sons, Inc., 2009
- 3. J D Mattingly, "Elements of Propulsion Gas Turbines and Rockets", AIAA Education Series, 2006.
- 4. Dan M.Goebel, Ira Katz, 'Fundamentals of Electric Propulsion', John Wiley & Sons Inc. New York, 2003.

Cours	Course Designers:									
S.No	Name of the Faculty	Designation	Department/College							
1	Sanjay Singh	Associate Professor		sanjay@vmkvec.edu.in						
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in						

AIRCRAFT GENERAL	Category	L	T	P	Credit
ENGINEERING AND	EC - SPL	2	0	0	2
MAINTENANCE PRACTICES		3	U	U	3

This course will provide the student a strong knowledge on the Aircrafts basic and regular maintenance to be followed to have a smooth and safety fly.

Course Objectives

1	To remember the various maintenance practices involved in aircraft.
2	To understand the various procedures to be followed during maintenance.
3	To provide an in-depth study of the safety precautions to be followed.
4	To identify the various special problems involved in the aircraft through inspection.
5	To fully equipped with the knowledge of the flight maintenance in all the aspects.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Recall the various maintenance practices involved in aircraft.	Remember
CO2.	Demonstrate the various procedures to be followed during	Understand
	maintenance.	
CO3.	Generalize the various primary safety precautions to be followed.	Apply
CO4.	Calculate the various special problems involved in the aircraft.	Apply
CO5.	Categorize the various flight maintenance procedures in all the	Analyze
	aspects.	

Mapping with Programme Outcomes and Programme Specific Outcomes

Cos	P	PO	РО	PO	PO	PO	PO	PO	PO	PO	РО	РО	PS	PS	PS
	O	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
	1														
CO	M	L	M	S	-	-	-	-	-	-	-	-	S	L	L
1															
CO	L	M	L	L	-	-	-	-	-	-	-	-	L	M	S
2															
CO	S	M	S	S	-	-	-	-	-	-	-	-	M	M	S
3															
CO	S	M	S	S	-	-	-	-	-	-	-	-	M	S	M
4															
CO	S	S	M	M	-	-	-	-	-	-	-	-	M	S	M
5															

S- Strong; M-Medium; L-Low

Syllabus

UNIT – I	AIRCRAFT GROUND HANDLING AND SUPPORT EQUIPMENT	10						
Mooring, jacl	king, leveling and towing operations – Preparation – Equipment – precautions – Engine							
Starting proce	edures - Piston engine, turboprops and turbojets - Engine fire extinguishing - Groundpov	wer unit.						
UNIT – II	GROUND SERVICING OF VARIOUS SUB SYSTEMS	8						
Air conditioning and pressurization – Oxygen and oil systems – Ground units and their maintenance.								
UNIT – III	MAINTENANCE OF SAFETY	5						
Shop safety – Environmental cleanliness – Precautions								
IINIT _ IV	INSPECTION	10						
UNIT – IV	INSPECTION Topics Types Inspection intervals Techniques Checklist Special inspection Publication	10						
Process – Pui	pose – Types – Inspection intervals – Techniques – Checklist – Special inspection – Publ							
Process – Pur bulletins, vari	pose – Types – Inspection intervals – Techniques – Checklist – Special inspection –Publ ous manuals – FAR Air worthiness directives – Type certificate Data sheets							
Process – Pui	pose – Types – Inspection intervals – Techniques – Checklist – Special inspection –Publ ous manuals – FAR Air worthiness directives – Type certificate Data sheets							
Process – Pur bulletins, vari – ATA Speci UNIT – V	pose – Types – Inspection intervals – Techniques – Checklist – Special inspection –Publ ous manuals – FAR Air worthiness directives – Type certificate Data sheets fications	ications,						
Process – Pur bulletins, vari – ATA Speci UNIT – V	pose – Types – Inspection intervals – Techniques – Checklist – Special inspection –Publ ous manuals – FAR Air worthiness directives – Type certificate Data sheets fications AIRCRAFT HARDWARE, MATERIALS, SYSTEM PROCESSES	12 e shop-						
Process – Purbulletins, vari – ATA Speci UNIT – V Hand tools – Identifiation	pose – Types – Inspection intervals – Techniques – Checklist – Special inspection – Publ ous manuals – FAR Air worthiness directives – Type certificate Data sheets fications AIRCRAFT HARDWARE, MATERIALS, SYSTEM PROCESSES - Precision instruments – Special tools and equipments in an airplane maintenance	12 e shop—ts,rivets,						

TEXT BOOKS:

1. Kroes Watkins Delp, "Aircraft Maintenance and Repair", McGraw Hill, New York, 1993

connectors - Cables - Swaging procedures, tests, Advantages of swaging oversplicing.

REFERENCES:

- 1. A&P Mechanics, "Aircraft Hand Book", FAA Himalayan Book House, New Delhi, 1996
- 2. A&P Mechanics," General Hand Book", FAA Himalayan Bok House, New Delhi, 1996

Course Designers:									
S.No	Name of the Faculty	Designation	Department/College	Mail ID					
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in					
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in					

AIRCRAFT MATERIALS AND PROCESSES	Category	L	T	P	Credit
ROCESSES	CC	3	0	0	3

This course provides basic knowledge in aircraft materials and its process.

Prerequisite

NIL

Course Objectives

- 1. To understand the structure of solid materials, crystal structures and physical metallurgy.
- 2. To understand the various deformation mechanisms, failure modes and phase diagram
- 3. To learn the various types of heat treatment methodologies and study of corrosion behaviour of materials.
- 4. To know the various types of engineering materials, properties and applications.
- 5. To learn about the exposure to high temperature materials for space applications

Course Outcomes

On the successful completion of the course, students will be able to

CO1. To know the elements of aerospace materials like crystallography.	Understand
CO2. To analyse the behaviour of materials using mechanical testing methods to know the properties of materials.	Apply
CO3. Identify heat treatment methods and surface treatments to improve mechanical properties of materials for applications in engineering industries. To make an analysis of the formation and effects of corrosion on various materials and to make an analysis of the formation and effects of corrosion on various materials.	Apply
CO4. Identify materials for industrial applications based on microstructure and mechanical property relationship	Analyze
CO5. To study and analyze the different types of high temperature materials for space applications	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO	S	L	-	-	-	-	-	-	-	-	-	-	L		
CO	M	S	M	L	ı	ı	1	ı	ı	ī	ı	ı	L		
CO	S	M	L	M	ı	ı	ı	ı	ı	ı	ı	ı	L		
CO	S	S	L	S	ı	ı	ı	ı	-		-	ı	L		
CO	L	S	M	S	-	-	-	ı	-		-	-	L		

.SYLLABUS

ELEMENTS OF AEROSPACE MATERIALS

Structure of solid materials – Atomic structure of materials – crystal structure – miller indices – density – packing factor – space lattices – x-ray diffraction – imperfection in crystals – physical metallurgy -general requirements of materials for aerospace applications.

MECHANICAL BEHAVIOUR OF MATERIALS

Linear and non linear elastic properties – Yielding, strain hardening, fracture, Bauchinger's effect –Notch effect testing and flaw detection of materials and components – creep and fatigue -comparative study of metals, ceramics plastics and composites.

CORROSION & HEAT TREATMENT OF METALS AND ALLOYS

Types of corrosion – effect of corrosion on mechanical properties – stress corrosion cracking –corrosion resistance materials used for space vehicles heat treatment of carbon steels – aluminium alloys, magnesium alloys and titanium alloys – effect of alloying treatment, heat resistance alloys –tool and die steels, magnetic alloys,

CERAMICS AND COMPOSITES

Introduction – powder metallurgy - modern ceramic materials – cermets - cutting tools – glass ceramic –production of semi fabricated forms - plastics and rubber – carbon/carbon composites, fabrication processes involved in metal matrix composites - shape memory alloys – applications in aerospace vehicle design, open and close mould processes.

HIGH TEMPERATURE MATERIALS CHARACTERIZATION

Classification, production and characteristics – methods and testing – determination of mechanical and thermal properties of materials at elevated temperatures – application of these materials in thermal protection systems of aerospace vehicles – super alloys – high temperature material characterization.

Text Books

1. Tifferton.G., "Aircraft Materials and Processes", V Edition, Pitman Publishing Co., 1995.

Reference Books

- 1. Martin, J.W., "Engineering Materials, Their properties and Applications", Wykedham Publications (London) Ltd., 1987.
- 2. VanVlack.L.H., "Materials Science for Engineers", Addison Wesley, 1985.3.
- 3. Raghavan.V., "Materials Science and Engineering", Prentice Hall of India, New Delhi, 1993.

Cours	Course Designers:											
S.No	Name of the Faculty	Designation	Department/College									
1	Sanjay Singh	Associate Professor		sanjay@vmkvec.edu.in								
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in								

AIRCRAFT PERFORMANCE	Category	L	T	P	Credit
STABILITY AND CONTROL	EC - SPL	3	0	0	3

This course will provide the student a strong knowledge on the Aircrafts various stability criteria's along the different axis and the controls involved in it and also the various flight performance in different flying conditions.

Course Objectives

1	To understand the various performance of flight during cruising condition
2	To understand the various maneuvering of flight
3	To provide an in-depth study of longitudinal static stability and its control.
4	To provide an in-depth study of directional and lateral static stability
5	To identify the Stability derivatives for dynamic stability.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Relate the various performance flights according to the maneuvers.	Remember
CO2.	Explain various flight maneuvers properly.	Understand
CO3.	Demonstrate the stability criteria's along the longitudinal axis of	Apply
	flight.	
CO4.	Demonstrate the stability criteria's along the directional and lateral	Apply
	axis.	
CO5.	Identify varies stability derivative problems.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

Cos	PO	PO2	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1		3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	M	L	M	S	-	-	-	-	-	-	-	-	-S	L	L
CO2	L	M	L	L	-	-	-	-	-	-	-	-	L	M	S
CO3	S	M	S	S	-	-	-	-	-	-	-	-	M	M	S
CO4	S	M	S	S	-	-	-	-	-	-	-	-	M	S	M
CO5	S	S	M	M	-	-	-	-	-	-	-	-	M	S	M

S- Strong; M-Medium; L-Low

Syllabus

UNIT – I CRUISING FLIGHT PERFORMANCE

International Standard Atmosphere - Forces and moments acting on a flight vehicle -Equation of motion of a rigid flight vehicle - Different types of drag —estimation of parasite drag co-efficient by proper area method-Drag polar of vehicles from low speed to high speeds - Variation of thrust, power with velocity and altitudes for air breathing engines . Performance of airplane in level flight - Power available and power required curves. Maximum speed in level flight - Conditions for minimum drag and power required

UNIT – II MANOEUVERING FLIGHT PERFORMANCE

11

Range and endurance - Climbing and gliding flight (Maximum rate of climb and steepest angle of climb, minimum rate of sink and shallowest angle of glide) -Turning performance (Turning rate turn radius). Bank angle and load factor – limitations on turn - V-n diagram and load factor.

UNIT – III STATIC LONGITUDINAL STABILITY

10

Degree of freedom of rigid bodies in space - Static and dynamic stability - Purpose of controls in airplanes - Inherently stable and marginal stable airplanes - Static, Longitudinal stability - Stick fixed stability - Basic equilibrium equation - Stability criterion - Effects of fuselage and nacelle - Influence of CG location - Power effects - Stick fixed neutral point - Stick free stability-Hinge moment coefficient - Stick free neutral points-Symmetric maneuvers - Stick force gradients - Stick _ force per 'g' - Aerodynamic Balancing.

UNIT – IV LATERAL AND DIRECTIONAL STABILITY

8

Dihedral effect - Lateral control - Coupling between rolling and yawing moments - Adverse yaw effects - Aileron reversal - Static directional stability - Weather cocking effect - Rudder requirements - One engine inoperative condition - Rudder lock.

UNIT – V DYNAMIC STABILITY

(

Dutch roll and spiral instability, Auto rotation and spin, Stability derivatives for lateral and directional dynamics.

TEXT BOOKS:

- 1. Perkins, C.D., and Hage, R.E., "Airplane Performance stability and Control", John Wiley & Son:, Inc, NY, 1988.
- 2. Nelson, R.C. "Flight Stability and Automatic Control", McGraw-Hill Book Co., 2004.
- 3. McCornick. W., "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, NY, 1979.

REFERENCES:

- 1. Etkin, B., "Dynamics of Flight Stability and Control", Edn. 2, John Wiley, NY, 1982.
- 2. Babister, A.W., "Aircraft Dynamic Stability and Response", Pergamon Press, Oxford, 1980.
- 3. Dommasch, D.O., Sherby, S.S., and Connolly, T.F., "Aeroplane Aero dynamics", Third Edition, Issac Pitman, London, 1981.
- 4. McCornick B. W, "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, NY, 1995.

Course Designers:

Cours	oc Designers.			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in

10

AIRCRAFT STRUCTURE LAB	Category	L	T	P	Credit
MINORITI STREETERS END	LAB - SPL	0	0	4	2

The aim of the subject is to provide a practical knowledge in aircraft structure.

Course Objectives

	1	To know how to find the Young's modulus of various materials.
Ī	2	To know about the fracture patterns for various materials.
	3	To know about the behaviours of beam when it is subjected to various end condition.
Ī	4	To know about the loads similarity with respect to distance
	5	To know which type of joint should be made to have a strong structure.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Remember the various materials to be used for various loads.	Remember
CO2.	Understand about the various fracture patterns for various materials.	Understand
CO3.	Apply the knowledge on behaviours of beam with various end condition.	Apply
CO4.	Apply the Maxwell's Reciprocal theorem & principle of superposition	Apply
	on various beam condition.	
CO5.	Analyze the character sticks of various material with various loading	Analyze
	condition.	

Mapping with Programme Outcomes and Programme Specific Outcomes

Cos	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
		2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
1															
CO	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
2															
CO	S	S	S	S	-	-	-	-	-	-	-	M	M	M	M
3															
CO	S	S	S	S	-	-	-	-	-	-	-	S	S	S	S
4															
CO	S	S	S	S	-	-	-	-	-	-	-	S	S	S	S
5															

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS:

- 1. Determination of Young's modulus of steel using mechanical extensometers.
- 2. Shear centre location for closed sections
- 3. Determination of fracture strength and fracture pattern of ductile materials.
- 4. Determination of fracture strength and fracture pattern of brittle materials.
- 5. Stress Strain curve for various engineering materials.
- 6. Flexibility matrix for cantilever beam
- 7. Verification of Maxwell's Reciprocal theorem & principle of superposition.
- 8. Column Testing.

- 9. Unsymmetrical bending of beams 10. Riveted Joints.

REFERENCE:

Aircraft Structure Lab Manual.

Cours	Course Designers:												
S.No	Name of the Faculty	Designation	Department/College										
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in									
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in									

INDUSTRY ELECTIVE COURSES

	Category	L	T	P	Credit
INTRODUCTION TO AIRCRAFT INDUSTRY AND AIRCRAFT SYSTEMS	INDUSTRY ELECTIVE (INFOSYS)	3	0	0	3

To provide knowledge about stakeholders in aviation industries and employment skills required by companies.

Prerequisite

NIL

Course Objectives

1	To provide an understanding of the basics of aircrafts.							
2	To provide a deep knowledge of stakeholders in aviation industries.							
3	To develop analytical skills for taking decisions.							
4	To develop criticizing skills and compare for better and best.							
5	To develop entrepreneurial skills.							

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and label components of an aircraft. Remember							
CO2.	Explain working of components of aircraft and its systems. Understand							
CO3.	3. Employ analytical skills for judgement of best. Apply							
CO4.								
CO5.	Evaluate and balanced approach towards employment in industries.	Evaluate						
CO6.	Create benchmarks by advising juniors about opportunities. Create							

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
•															
CO3	S	S	S	S	-	-	1	-	-	-	-	-	M	M	M
CO4	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO6	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

Syllabus		
UNIT – I	AIRCRAFT INDUSTRY OVERVIEW	8

Evolution and History of Flight, Types Of Aerospace Industry, Key Players in Aerospace Industry, Aerospace Manufacturing, Industry Supply Chain, Prime contractors, Tier 1 Suppliers, Key challenges in Industry Supply Chain, OEM Supply Chain Strategies, Mergers and Acquisitions, Aerospace Industry Trends, Advances in Engineering/CAD/CAM/CAE Tools and Materials technology, Global and Indian Aircraft Scenario.

UNIT – II INTRODUCTION TO AIRCRAFTS

8

Basic components of an Aircraft, Structural members, Aircraft Axis System, Aircraft Motions, Control surfaces and High lift Devices. Types of Aircrafts - Lighter than Air/Heavier than Air Aircrafts Conventional Design Configurations based on Power Plant Location, Wing vertical location, intake location, Tail Unit Arrangements, Landing Gear Arrangements. Unconventional Configurations-Biplane, Variable Sweep, Canard Layout, Twin Boom Layouts, Span loaders, Blended Body Wing Layout, STOL and STOVL Aircraft, Stealth Aircraft. Advantages and disadvantages of these Configurations.

UNIT – III INTRODUCTION TO AIRCRAFT SYSTEMS

9

Types of Aircraft Systems, Mechanical Systems, Electrical and Electronic Systems, Auxiliary systems, Mechanical Systems: Environmental control systems (ECS), Pneumatic systems, Hydraulic systems, Fuel systems, Landing gear systems, Engine Control Systems, Ice and rain protection systems, Cabin Pressurization and Air Conditioning Systems, Steering and Brakes Systems Auxiliary Power Unit, Electrical systems: Avionics, Flight controls, Autopilot and Flight Management Systems, Navigation Systems, Communication, Information systems, Radar System.

UNIT – IV BASIC PRINCIPLES OF FLIGHT

10

Significance of speed of Sound, Air speed and Ground Speed, Properties of Atmosphere, Bernoulli's Equation, Forces on the airplane, Airflow over wing section, Pressure Distribution over a wing section, Generation of Lift, Drag, Pitching moments, Types of Drag, Lift curve, Drag Curve, Lift/Drag Ratio Curve, Factors affecting Lift and Drag, Center of Pressure and its effects. Aerofoil Nomenclature, Types of Aerofoil, Wing Section- Aerodynamic Center, Aspect Ratio, Effects of lift, Drag, speed, Air density on drag.

UNIT – V BASICS OF FLIGHT MECHANICS

10

Mach Waves, Mach Angles, Sonic and Supersonic Flight and its effects

Stability and Control

Degree of Stability- Lateral, Longitudinal and Directional Stability and controls of Aircraft. Effects of Flaps and Slats on Lift Coefficients, Control Tabs, Stalling, Landing, Gliding Turning, Speed of Sound, Mach Numbers, Shock Waves

Aircraft Performance and Maneuvers

Power Curves, Maximum and minimum speeds of horizontal flight, Effects of Changes of Engine Power, Effects of Altitude on Power Curves, Forces acting on an Aeroplane during a Turn, Loads during a Turn, Correct and incorrect Angles of Bank, Aerobatics, Inverted Maneuvers, Maneuverability.

TEXT BOOK:

- 1. Flight without Formulae by A.C Kermode, Pearson Education, 10th Edition.
- 2. Mechanics of Flight by A.C Kermode, Pearson Education, 5th Edition.
- 3. Fundamentals of Flight, Shevell, Pearson Education, 2nd Edition.

REFERENCES:

- 1. Introduction to Flight by Dave Anderson.
- 2. Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration by Ian Moir, Allan Seabridge
- 3. An Introduction to Aircraft Certification; A Guide to Understanding JAA, EASA and FAA by Filippo De Florio, Butterworth-Heinemann.

Course Designers:

S.No	Name of the Faculty	Mail ID						
1	Senthil kumar M	senthil@vmkvec.edu.in						
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in						
3	Sanjay Singh	sanjay@vmkvec.edu.in						

	Category	L	T	P	Credit
DESIGN OF AIRCRAFT STRUCTURES	INDUSTRY ELECTIVE	3	0	0	3
51110 01 01125	(INFOSYS)				

To study about load taking capabilities of components of aircraft structures.

Prerequisite

NIL

Course Objectives

Court	se objectives						
1	To understand the basic concepts of strengthening components of aircrafts.						
2	To develop an understanding of applications of basic theories of strength of materials.						
3	To develop analytical skills for selection of suitable and precise method.						
4	To design and suggest modification in existing load carrying members.						
5	To develop entrepreneurial skills.						

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and label components of aircraft structures.	Remember
CO2.	Explain working of load carrying members.	Understand
CO3.	Employ analytical skills to calculate stresses at different points.	Apply
CO4.	Categorise the structure and estimate reliable performance.	Analyze
CO5.	Evaluate and modify the system for meeting suitable requirement.	Evaluate
CO6.	Formulate and design a new modified structure for new applications.	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

TVIUP	,,,,	1011 1 1 (51 am	ine ou	teome	o unu .	rrogre	41111111	Specia	ic Oute	OHIC				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3	S	S	S	S	-	-	-	-	-	S	-	-	M	M	M
CO4	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5	S	S	S	S	-	-	-	-	-	-	S	-	S	S	S
CO6	S	S	S	S	-	-	-	-	-	-	-	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus								
UNIT – I	FUNDAMENTALS ANALYSIS	OF	AIRCRAFT	DESIGN	PROCESS	AND	STRUCTURAL	8
T . 1 .	DI CAL C.D.	<u> </u>	C: C	15 ' 5		. 1.	n. D 1: 1	· —

Introduction, Phases of Aircraft Design, Aircraft Conceptual Design Process, Conceptual Stage, Preliminary Design, Detailed Design, Design Methodologies, Review of Hooke's Law, Principal stresses, Equilibrium and Compatibility, Determinate Structures, St. Venant's Principle, Conservation of Energy, Stress Transformation, Stress Strain Relations.

UNIT – II INTRODUCTION TO AIRCRAFT STRUCTURES AND AIRCRAFT LOADS

Types of Structural members of Fuselage and wing section Ribs, Spars, Frames, Stringers, Longeron, Splices, Sectional Properties of structural members and their loads, Types of structural joints, Type of Loads on structural joints, Aerodynamic Loads, Inertial Loads, Loads due to engine, Actuator Loads, Maneuver Loads, VN diagrams, Gust Loads, Ground Loads, Ground conditions, Miscellaneous Loads.

UNIT – III AIRCRAFT MATERIALS AND MANUFACTURING PROCESSES

8

Material selection criteria, Aluminum Alloys, Titanium Alloys, Steel Alloys, Magnesium Alloys, copper Alloys, Nimonic Alloys, Non Metallic Materials, Composite Materials, Use of Advanced materials Smart materials, Manufacturing of A/C structural members, Overview of Types of manufacturing processes for Composites, Sheet metal Fabrication ,Machining, Welding, Super-plastic Forming And Diffusion Bonding

UNIT – IV STRUCTURAL ANALYSIS OF AIRCRAFT STRUCTURES

12

Theory of Plates- Analysis of plates for bending, stresses due to bending, Plate deflection under different end conditions, Strain energy due to bending of circular, rectangular plates, Plate buckling, Compression buckling, shear buckling, Buckling due to in plane bending moments, Analysis of stiffened panels in buckling, Rectangular plate buckling, Analysis of Stiffened panels in Post buckling, Post buckling under shear. **Sample Exercises**.

Theory of Shells-Analysis of Shell Panels for Buckling, Compression loading, Shear Loading / Shell Shear Factor, Circumferential Buckling Stress, **Sample exercises**

Theory of Beams-Symmetric Beams in Pure Bending, Deflection of beams, Unsymmetrical Beams in Bending, Plastic Bending of beams, Shear Stresses due to Bending in Thin Walled Beams, Bending of Open Section Beams, Bending of Closed Section Beams, Shear Stresses due to Torsion in Thin Walled Beams. **Sample Exercises**.

Theory of Torsion - Shafts of Non-Circular Sections, Torsion in Closed Section Beams, Torsion in Open Section Beams, Multi Cell Sections, **Sample Exercises**.

UNIT - V AIRCRAFT STRUCTURAL REPAIR, AIRWORTHINESS AND AIRCRAFT CERTIFICATION

Definition, Airworthiness Regulations, Regulatory Bodies, Type certification, General Requirements, Requirements Related to Aircraft Design Covers, Performance and Flight Requirements, Airframe Requirements, Landing Requirements, Fatigue and Failsafe requirements, Emergency Provisions, Emergency Landing requirements.

Types of Structural damage, Nonconformance, Rework, Repair, Allowable damage Limit, Repairable Damage Limit, Overview of ADL Analysis, Types of Repair, Repair Considerations and best practices.

TEXT BOOK:

- 1. Aircraft Design-A Conceptual Approach by Daniel P.Raymer, AIAA education series, 6th Edition
- 2. Airframe Structural Design by Michael Niu, Conmilit Press, 1988,2nd Edition
- 3. Airframe Stress Analysis and Sizing by Michael Niu, Conmilit Press, 1999,3rd Edition.

REFERENCES:

- 1. The Elements of Aircraft Preliminary Design Roger D. Schaufele, Aries Publications, 2000
- 2. Aircraft Structural Maintenance by Dale Hurst, Avotek publishers, 2nd Edition, 2006
- 3. Aircraft Maintenance & Repair by Frank Delp, Michael J. Kroes & William A. Watkins, Glencoe & McGraw-Hill,6th Edition, 1993

Course Designers:

S.No	Name of the Faculty	Mail ID
1	Senthil kumar M	senthil@vmkvec.edu.in
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

INNOVATION & ENTREPRENEURSHIP, SKILL DEVELOPMENT COURSES

ENGINEERING STARTUPS	Category	L	T	P	Credit
AND ENTREPRENEURIAL	HSS	3	0	0	3
MANAGEMENT					

PREAMBLE:

A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the basics of Startups Management and components.
- 2. To analyze the startups fund management practices
- 3. To practice the various kinds of stocks and employment considerations in startups.
- 4. To apply the importance of intellectual property rights and its procedures.
- 5. To explore the entrepreneurial mindset and culture.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Explain the concept of engineering startups, objectives and functions and its components.	Understand
CO2: Analyze the startups funding issues and remuneration practices in startups business.	Analyse
CO3: Analyze the various kinds of stocks and employment opportunities and consideration in	Analyse
startups business.	
CO4: Compare and contrast the various forms of intellectual property protection and practice.	Analyse
CO5: Explore the entrepreneurial mindset and culture that has been developing in	Evaluates
companies of all sizes and industries.	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	-	-	-	-	M	M	S	-	M	-	M	-	L	L
CO2	S	S	M	M	M	L	-	-	-	-	-	M	L	L	-
CO3	S	S	S	M	M	M	-	-	-	-	-	M	L	-	M
CO4	S	S	S	M	M	M	-	-	-	-	-	M	-	M	L
CO5	S	S	-	M	M	M	-	-	-	-	-	M	M	M	M

S- Strong; M-Medium; L-Low

SYLLABUS:

Elements of a successful Start up: Startup Process – Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service – preparation of business plan -

specific problems and challenge in startup.

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up: Salaries – Equity Ownership – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk- Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares – Compensation and startup Employment Considerations: Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents—Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Startup Capital Requirements and Legal Environment:

Identifying Startup capital Resource requirements - estimating Startup cash requirements - Develop financial assumptions- Constructing a Process Map - Positioning the venture in the value chain - Launch strategy to reduce risks- Startup financing metrics - The Legal Environment- Approval for New Ventures- Taxes or duties payable for new ventures..

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guide for the High-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- 2. Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech. 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID		
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in		
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in		

	PROJECT MANAGEMENT FOR	Category	L	T	P	Credit
	ENGINEERING BUSINESS AND	HSS	3	0	0	3
	TECHNOLOGY	1155		U		3
PREAMBLE:	Engineering Project Management is a ty	pe of Project I	Manage	ment,	focuse	s solely or
engineering and	Management. Similar to other Project Ma	anagement it pos	sses star	ndard	method	lologies and
processes with e	ngineering background. It enables to get in	nto the field of P	roject N	/Ianage	ement.	These skills
can provide crit	ical benefits such as improved efficience	cy, enhanced ef	fectiven	ess, s	uccess	replication
perfect leadershi	p and communication, and complete view	of the project in t	he aspe	ct of ti	me and	l cost.
	-	2 0	-			
PREREQUISITE	E: Not Required					
COURSE OBJEC	CTIVEC.					
COURSE OBJEC	CIIVES:					
1. To unde	erstand the importance of Project Management	•				
2. To und	erstand the Project management Techniques.					
3. To und	erstand the statistical process control.					
4. To imp	eart the various Project management tools and	software.				
•	, c					
5. To unde	erstand the Project management and resource u	tilization.				
COURSE OUTC	OMES:					
After successful co	ompletion of the course, students will be able t	o				
CO1: Uı	nderstand the importance of Project Manageme	ent and Business.		U	Indersta	nd

Apply

Analyze

Analyze

Evaluate

CO2: Explain the required tools to implement Project Techniques.

CO3: Analyze various Project constraints with help of project tools.

CO5: Put forward the Project management in a different organization milieu.

CO4: Evaluating various Project Techniques.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	S	M	-	-	-	M	-	-	M	S	-	M	M	-	-
CO2	S	S	M	-	M	M	S	M	S	S	-	-	M	S	M
CO3	S	M	M	M	S	-	M	M	-	M	-	M	S	M	-
CO ²	M	-	S	-	M			S	S			M	-	S	-
COS	M	M	-	-	M	M	M	S		S	M	S	M	-	S

S- Strong; M-Medium; L-Low

SYLLABUS:

INTRODUCTION

Project Management concept-Attributes as a project-Project life cycle-The Project Management process-Benefits of Project Management- Needs, Identification-Project selection-preparing a request for proposal-Soliciting proposals-Proposed solutions- Proposal Marketing-Bid/No-Bid Decision-Developing Winning Proposal-Proposal preparation-Proposal contents-Pricing Consideration-Proposal Submission and Follow-up - Customer evaluation as proposals-Types of contracts-Contract provisions.

PROJECT PLANNING

Project Planning-Project Planning Objective-Work Break-down structure-Responsibility Matrix-Defining activities-Developing the network plan-Planning for Information system development- -Scheduling-activity duration estimates-project start and finish times-Schedule calculation-Scheduling for information systems development.

PROJECT CONTROL PROCESS

Schedule control-Project control process-Effects of actual schedule performance - Incorporating project changes into schedule-Updating the project schedule-Approaches to schedule control-Schedule control for information system development – Resource consideration-Constrained Planning-Planned resources utilization – Resources levelling- Limited scheduling-Project Management software – Cost Planning and Performance - Project cost Estimates-Project Budgeting-Determining actual cost-Determining the value of work performed-Cost performance analysis-Cost forecasting-Cost control-Managing Cash Flow.

RISK AND FEASIBILITY

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process- Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept-Improvement Needs- FMEA – Stages of FMEA.

PROJECT MANAGER SKILLS AND ABILITIES

Project Manager-Responsibilities of the Project Manager-Skills at the Project Manager - Developing the skill needed to be a Project Manager-Delegation-Managing Change – Project Team-Project Team development and Effectiveness- Ethical Behaviour conflict on project-problem solving-Time Management-Project Communication and Personal Communication-Effective listening-Meetings-Presentation-Report-Project documentation and Controlling changes-Types of project organization- Matrix organization.

TEXT BOOKS:

- 1. Samuel J.Mantel JR., Jack R.Meredith, Project Management, Wiley India, Edition 2006.
- 2. Santakki.V.C., Project Management, Himalaya Publishing House, Edition 2006.

REFERENCES:

1. Project Management, Jack Gido and James P Clements, (Edition 2009) Cenage Learning India pvt Ltd., New Delhi.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	mail id	
1	B. Rajnarayanan	Assistant Professor	Management Studies	rajsachin.narayanan@gmail.com	
2	Dr. V.Sheelamary	Asso.Professor	Management Studies	sheelamary@avit.ac.inn	

INTELLECTUAL PROPERTY RIGHTS AND ALTERNATE DISPUTE RESOLUTION

Category	L	T	P	Credit
	3	0	0	3

PREAMBLE: IPR & ADR

Intellectual Property Rights are valuable assets and most important for any kind of business because set the business apart from competitors, offer customers something new and different, be sold or licenced form an essential part of marketing or branding. ADR is a familiar mechanism to resolve the business issues in a faster way and less expensive with help of a neutral third party.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand and learn the basic concept of IPR and Patent filing procedure.
- 2. To understand and familiarize various procedure for grants of patent, trademark and trade secrets.
- 3. To apply various legal aspects in patent ownership and transfer.
- 4. To apply and practice the laws relating to the Intellectual property rights.
- 5. To Create model contexts to practice the ADR mechanism.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

r	
CO1: Understand the different aspects of intellectual property rights.	Understand
CO2: Explain the procedure and requirement of to apply New IPR development and related	Apply
system in India and across the Globe.	
CO3: Analyse the various issues of transfer of patent ownership with reference to	Analyse
International Patent Law.	
CO4: Evaluate the present system of Patent Act in India and changes aligned with	Evaluate
international standards.	
CO5: Prepare and assess the mechanism to apply in the business issues in the context of	Create
ADR	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	M	L	L	L	L	L	M	L	L	M	L	L	
CO2	S	S	M	L	M	L	L	M	M	L	L	L	
CO3	S	S	M	M	S	M	L	S	M	L	L	M	
CO4	M	S	S	L	M	L	L	M	M	L	L	M	
CO5	S	S	S	L	M	M	S	M	L	S	M	S	

S- Strong; M-Medium; L-Low

SYLLABUS:

UNIT – I: Introduction To IPRs

9

Basic concepts of Intellectual Property- Patents Copyrights, Geographic Indicators, History of IPRs- the way from WTO to WIPO- TRIPS, Nature of Intellectual Property, Industrial Property, Technological Research, Inventions and Innovations - Defining Intellectual Property and Patents, Patent Searches and Application.

UNIT – II: New Developments in IPR

9

Procedure for grant of Patents, TM, GIs, Trade Secrets, Patenting under PCT, Administration of Patent system in India, Patenting in foreign countries - International Treaties and conventions on IPRs, The TRIPs Agreement.

UNIT – III: Patent Ownership and Transfer

9

Defining Intellectual Property and Patents, Patent Searches and Application, Patent Ownership and Transfer, Patent Infringement, New Developments and International Patent Law

UNIT – IV: Legislation of IPRs

9

The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical Indication Act, Bayh- Dole Act and, IPR strength in India - Patent Ownership and Transfer, Patent Infringement, New Developments and International Patent Law

UNIT – V: Alternate Dispute Resolution

9

Alternate Dispute Resolution and Arbitration – ADR Initiatives - Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration - Effective Mechanism for Business Issues.

TEXT BOOK:

1. Deborah E. Bouchoux, Intellectual Property Rights, Delmar, Cengage Learning, 2005.

REFERENCES:

- 1. V. Sople Vinod, Managing Intellectual Property by (Prentice hall of India Pvt.Ltd), 2006.
- 2. A. Primer, R. Anita Rao and Bhanoji Rao, Intellectual Property Rights, Lastain Book company. Edited by Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar Publishing Ltd., 2006.
- 3. Tejaswini Apte, A single guide to Intellectual property rights, Biodiversity and Traditional knowledge.
- 4. WIPO Intellectual Property Hand book.
- 5. Intellectual Property rights and copyrights, Ess Ess Publications.

COURSE DESIGNERS:

S.No	Name of the Faculty Designation		Department	mail id
1	G. Palaniappan	Associate Professor	Management Studies	palaniappan@vmkvec.edu.in
2	B. Rajnarayanan	Assistant Professor	Management Studies	rajsachin.narayanan@gmail.com

INNOVATION, PRODUCT DEVELOPMENT AND	Category	L	Т	P	Credit
COMMERCIALIZATION	HSS	3	0	0	3

PREAMBLE

commercialization of innovation and new products in fast-paced, high-tech markets and matching technological innovation to market opportunities.

PREREQUISITE - Not Required

COURSE OBJECTIVES

- To make students understand multiple-perspective approach in organization to capture knowledge and creativity to develop successful products and services for Volatile, Uncertain, Complex and Ambiguous (VUCA) world.
- Inculcate a disruptive thought process to generate ideas for concurrent and futuristic problems of society in general and markets in particular which focus on commercialization
- 3 Improved understanding of organizational best practices to transform exciting technology into successful products and services
- 4 Critically assess and evaluate innovation policies and practices in organizations especially from a cultural and leadership point of view
- 5 Explain why innovation is essential to organizational strategy especially in a global environment

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Understand the role of innovation in gaining and maintaining competitive advantage	Understand
CO2: Integrate the innovation basis and its role in decision making especially under uncertainty	Apply
CO3: Analyze business challenges involving innovation management	Apply
CO4: Having problem solving ability – solving social issues and business problems	Apply
CO5: Comprehend the different sources of innovation	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	P	P	P	P	P	P	P	PO	PO9	PO10	PO11	P012
	01	O2	03	O4	O 5	O6	O7	8				
CO1	M	-	-	-	-	M	S	S	-	M	-	-
CO2	S	S	S	M	M	M	-	-	-	-	-	-
CO3	S	S	S	M	M	M	-	-	-	-	-	-
CO4	S	S	S	M	M	M	-	-	-	-	-	-
CO5	S	S	S	M	M	M	-	-	-	-	-	-

S- Strong; M-Medium; L-Low

Pre-launch, during launch and Post launch preparations;

SYLLABUS:

Introduction to Innovation Management - Innovation – What it is? Why it Matters? - Innovation as a Core Business Process – system thinking for innovation – Framework for System Thinking - system thinking tools

Creating New Products and Services - Product and Service Innovation – Exploiting Open Innovation and Collaboration –The Concept of Design Thinking and Its Role within NPD and Innovation – framework for design thinking

Capturing Innovation Outcome - New Venture – Benefits of Innovation, and Learning from Innovation – Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

New Product Brand Development and Pricing Strategies - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing

The Product offer Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

Text Book:

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating Technological, Market and Organizational Change, 5th edition, Wiley.

Reference Books:

- 1. Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.
- 2. Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, Oxford University Press.
- 3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product Development Essentials from the PDMA, Wiley-Blackwell.
- 4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1st edition, Wiley.
- **5.** Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, Systems Solutions Press

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

	SOCIAL ENTREPRENEURSHIP	Category	L	T	P	Credit
	SOCIIL EIVIREI REIVECKSIIII	HSS	3	0	0	3
PREAMBLE						

Social entrepreneurship involves the creativity, imagination and innovation often associated with entrepreneurship.

PREREQUISITE - Not Required

COURSE OBJECTIVES

- To provide students with a working knowledge of the concepts, opportunities and challenges of social entrepreneurship..
 To demonstrate the role of social entrepreneurship in creating innovative responses to critical social needs (e.g., hunger, poverty, inner city education, global warming, etc)..
 To engage in a collaborative learning process to develop a better understanding of the context and
 - domain of social entrepreneurship..

 To help prepare you personally and professionally for meaningful employment by reflecting on the
 - To help prepare you personally and professionally for meaningful employment by reflecting on the issues of social entrepreneurship.
 - 5 Engage with a diverse group of social entrepreneurs

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Explain the concept social entrepreneurship and distinguish its elements from across a continuum of organizational structures from traditional nonprofits to social enterprises to traditional for profits	Understand				
CO2: Analyze the operations of a human service organization using social entrepreneurial orientation and industry assessment and diagnostic tools.	Apply				
CO3: Apply the Social Business Model Canvas and lean startup methods for planning, developing, testing, launching and evaluating social change ventures.					
CO4: Compare funding options for social change ventures.	Apply				
CO5: The outcomes of social entrepreneurship are focused on addressing persistent social problems particularly to those who are marginalized or poor.	Apply				

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	P	P	P	P	P	P	P	PO	PO9	PO10	PO11	P012
	O1	O2	O3	O4	O5	O6	O7	8				
CO1	M	-	-	-	-	M	S	S	-	M	-	-
CO2	S	S	S	M	M	M	-	-	-	-	-	-
CO3	S	S	S	M	M	M	-	-	-	-	-	-
CO4	S	S	S	M	M	M	-	-	-	-	-	-
CO5	S	S	S	M	M	M	-	-	-	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

Social entrepreneurship – dimensions of social entrepreneurship – social change theories – equilibrium and

complexity – theory of social emergence

Social entrepreneurs – mindset, characteristics and competencies – developing a social venture sustainability model – feasibility study – planning – marketing challenges for social ventures

Microfinance– MFI (Micro Finance Institutions) in India – regulatory framework of MFI – Banks and MFIs – sustainability of MFI – Self Help Groups– successful MFI models

Angel Investors & Venture Capitalists – difference – valuation of firm – negotiating the funding agreement – pitching idea to the investor

Corporate entrepreneurship – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

Text Book:

- 1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.
- 2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, Edward Elgar Publishing, 2013.

Reference Books:

- 1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007). Entrepreneurship in the Social Sector (ESS). Sage Publications.
- 2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.
- 3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship: A critique and future directions.
- 4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.
- 5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone Needs to Know, Oxford University Press, 2010.

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	
			_	

NEW VENTURE PLANNING AND MANAGEMENT Category L T P Credit HSS 3 0 0 3

PREAMBLE

Contemporary methods and best practices for the entrepreneur to plan, launch, and operate a new venture and creation of a business plan

PREREQUISITE - Not Required

COURSE OBJECTIVES

- 1 An opportunity for self-analysis, and how this relates to success in an entrepreneurial environment.
 2 Information and understanding necessary to launch and grow an entrepreneurial venture.
- 3 A realistic preview of owning and operating an entrepreneurial venture.
- 4 An entrepreneur must understand the diversity, emotional involvement, and workload necessary to succeed.
- 5 The opportunity to develop a business plan.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Explain the concept of new venture planning, objectives and functions and its						
components.						
CO2: Analyze the business plan issues and remuneration practices in startups business.	Apply					
CO3: Explore an entrepreneurial idea to the point where you can intelligently and decide						
whether to "go for it" or not.						
CO4: Compare and contrast the different forms entrepreneurial environment in terms of their	Apply					
key differences and similarities.						
CO5: Explore the business plan and business model canvas for your idea.						

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	P	P	P	P	P	P	P	PO	PO9	PO10	PO11	P012
	O1	O2	O3	O4	O5	O6	O7	8				
CO1	M	-	-	-	-	M	S	S	-	M	-	-
CO2	S	S	S	M	M	M	-	-	-	-	-	-
CO3	S	S	S	M	M	M	-	-	-	-	-	-
CO4	S	S	S	M	M	M	-	i	-	1	-	_
CO5	S	S	S	M	M	M	-	-	-	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS:

STARTING NEW VENTURE: Opportunity identification - Search for new ideas - Sources of innovative ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

METHODS TO INITIATE VENTURES: Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising -

How a franchise works and franchise law - Evaluating franchising opportunity.

THE SEARCH FOR ENTREPRENEURIAL CAPITAL: The venture capital market - Criteria for evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing - Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations - Business incubators and facilitators - Informal risk capital - Angel investors.

THE MARKETING ASPECTS OF NEW VENTURE: Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

BUSINESS PLAN PREPARATION FOR NEW VENTURE: Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India .

Text Book:

- 1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House
- 2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

Reference Books:

- 1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.
- 2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- 4. Business Model Generation by Osterwalder and Pigneur.

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
			_	
2			Management Studies	

FINANCE AND ACCOUNTING	Category	L	Т	P	Credit
FOR ENGINEERS	HSS	3	0	0	3

PREAMBLE: Engineers are in a position to do Decision Making during every activity in the industry. The activities ranging from Operation to Non-Operation during the routine functions of the organization. Especially, Finance and Accounting also becomes the part of responsibility of every engineer to do data analysis activities. His interpretation through data analysis and reporting in every transaction helps the organization to do decision making to run the organization effectively and efficiently. Finance and Accounting Practices enable the engineers to handle the resources to do cost and Financial decisions with optimum resources for the betterment of the organization.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the concepts and conventions to prepare Income Statement, and Balance Sheet.
- 2. To apply the various methods to claim depreciation and
- 3. To practice fundamental investment decision through capital budgeting techniques.
- 4. To analyse cost-volume profit analysis for decision making and analyse standard costing techniques.
- 5. To estimate the working capital requirements for day-to-day activities and handling inventories with economic ordering quantities.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of recording, book keeping and reporting of the business	Understand
transaction.	
CO2: Identify and Apply suitable method for charging depreciation on fixed assets.	Apply
CO3: Analyse the various methods of capital budgeting techniques for investment decision.	Apply
CO4: Justify the scope of cost-volume-profit analysis, standard costing, and marginal	Analyse
costing techniques for decision making.	
CO5: Estimation of working capital requirements of the organization.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	M	L	S	M	-	S	-	M	M	L	M	L	M
CO2	L	-	-	L	M	-	L	L	-	-	L	M	L	L	-
CO3	-	M	-	M	L	-	-	L	S	M	-	L	-	L	M
CO4	L	L	-	S	=	-	L	-	-	L	M	L	M	L	M
CO5	L	-	L	S	L	-	-	M	M	L	-	L	M	M	-

S- Strong; M-Medium; L-Low

SYLLABUS:

Introduction: Business Environment – Book Keeping and Accounting – Accounting Concepts and Conventions – Double entry system – Preparation of journal, ledger and Trial balance – Final Accounts.

Deprecation: Meaning – Causes - Methods of Calculating Depreciation: Straight Line Method, Diminishing Balance Method and Annuity Method.

Capital Budgeting Decisions: Meaning – Nature & Importance of Investment Decisions – Types - Financial statement analysis and interpretation - Types of Analysis - Objectives - Tools of Analysis - Ratio Analysis: Objectives, Uses and Limitations - Classification of Ratios: Liquidity, Profitability, Financial and Turnover Ratios - Funds Flow Analysis and Cash Flow Analysis: Sources and Uses of Funds, Preparation of Funds Flow statement, Uses and Limitations: Pay Back Period – Accounting Rate of Return – NPV – IRR - Profitability Index.

Marginal Costing: Marginal Cost - Breakeven Analysis - Cost Volume Profit Relationship - Applications of Standard and marginal Costing Techniques.

Working Capital Management: – Types of Working Capital – Operating Cycle – Determinants of Working Capital - Receivables Management – Inventory Management – Need for holding inventories – Objectives – Inventory Management Techniques: EOQ & Reorder point – ABC Analysis - Cash Management – Motives for holding cash.

Text Book

- 1. Kesavan, C. Elenchezhian, and T. Sunder Selwyan, "Engineering Economics and Financial Accounting", Firewall Media, 2005.
- 2. Kasi Reddy .M and Saraswathi .S, "Managerial Economics and Financial Accounting", PHI Learning Pvt., Ltd. 2007.

Reference Book

- 1. Periyasamy .P, "A Textbook of Financial, Cost and Management Accounting", Himalaya Publishing House, 2010.
- 2. Palanivelu V.R., "Accounting for Managers", Lakshmi Publications, 2005.
- Mark S Bettner, Susan Haka, Jan Williams, Joseph V Carcello, "Financial and Management Accounting", Mc-Graw-Hill Education, 2017

S.No	Name of the Faculty	Designation	Department	Mail ID
1	M.Manickam	Associate Professor	Management Studies	manickam@vmkec.edu.in
2	Dr. Rajeshkumar	Assistant Professor	Management Studies	Rajesh.mba@avit.ac.in

EMERGING AREA – OPEN ELECTIVE COURSES

BIOSENSORS AND TRANSDUCERS	Category	L	Т	P	Credit
DIOSENSONS AND TRANSDUCERS	OE	3	0	0	3

PREAMBLE

The course is designed to make the student acquire conceptual knowledge of the transducers and biological components used for the detection of an analyte. The relation between sensor concepts and biological concepts is highlighted. The principles of biosensors that are currently deployed in the clinical side are introduced.

PREREQUISITE - Nil

COURSE OBJECTIVES

1	To use the basic concepts of transducers, electrodes and its classification.								
2	To discuss the various types of electrodes.								
3	To determine the recording of biological components.								
4	To employ the knowledge in electrochemical and optical biosensors.								
,									

COURSE OUTCOMES

On the successful completion of the course, students will be able to

To outline the various biological components using biosensors.

CO1. Describe the working principles of transducers.	Understand		
CO2. Explain the various types of electrodes.	Understand		
CO3. Utilize various FET sensors for recording of biological components.	Apply		
CO4. Distinguish various biosensors like electrochemical and optical biosensors.	Analyze		
CO5. Analyze the biological components using biosensors in various applications.	Analyze		

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L		M		M			L			M		M	
CO2	M	L		M		M			L			M		M	
CO3	S	M	L	S		S	M	M	M			M	M	M	M
CO4	S	S	L	S		S	M	M	S			M	M	M	S
CO5	S	S	L	S		S	M	M	S			S	M	M	S

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

BIO POTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

APPLICATIONS OF BIOSENSORS:

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

REFERENCES:

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- 2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).
- 3. Geddes and Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, John Wiley Publications, 2008.

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1	Dr.L.K.Hema	Professor & Head	BME	hemalk@avit.ac.in			
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in			
3	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	Prabhakaran.bme@avit.ac.in			
4	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in			

P Category L T Credit PRINCIPLES OF MEDICAL **INSTRUMENTATION** OE 3 0 0 3 **PREAMBLE** To enable the students to develop knowledge of principles, design and applications of the Biomedical Instruments. PREREQUISITE - NIL **COURSE OBJECTIVES** To know about bioelectric signals, electrodes and its types. 2 To know the various Biopotential recording methods.

To study about patient monitoring concept and various Physiological measurements methods.

To study the principle of operation blood flow meter, blood cells counter.

COURSE OUTCOMES

3

4

5

On the successful completion of the course, students will be able to

CO1. Explain the different Bio signal or biopotential.	Understand
CO2. Discuss the working principles of diagnostic and therapeutic equipments.	Understand
CO3. Examine the various instruments like as ECG, EMG, EEG, X-ray machine.	Apply
CO4. Illustrate medical instruments based on principles and application used in hospital.	Analyze
CO5. Analyze and calibrate fundamental biomedical instrumentation used in hospital.	Analyze

To study about bio chemical measurements and details the concept of biotelemetry and patient safety.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M			-								L	M		
CO2	M								L			L	M		
CO3	S	S	M	S	M				M			M	M	M	S
CO4	S	M	M	M	L			L	S	L		S	M	S	S
CO5	S	S	M	M	L	M		L	S	L		S	M	S	S

S- Strong; M-Medium; L-Low

SYLLABUS

BIOELECTRIC SIGNALS AND ELECTRODES

Basic medical instrumentation system, Origin of Bioelectric Potential, Recording electrodes – Electrode Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Microelectrodes.

BIO AMPLIFIER AND BIOMEDICAL RECORDERS

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, Isolation Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

PATIENT MONITORING SYSTEM AND NON ELECTRICAL PARAMETERS MEASUREMENTS

System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood pressure measurement, Measurement of temperature, Respiration rate measurement, cardiac output measurement, Measurement of pulse rate, Plethysmography technique.

BLOOD FLOW METERS, BLOOD CELL COUNTERS

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

BIO- CHEMICAL MEASUREMENTS AND BIOTELEMETRY AND PATIENT SAFETY

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-analyser. Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

TEXT BOOKS:

- 1. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, "Biomedical Instrumentation and Measurements", Prentice-Hall India, 2nd Edition, 1997.

REFERENCES:

- 1. John G. Webster, "Medical Instrumentation application and design", John Wiley, 3rd Edition, 1997.
- 2. Carr, Joseph J, Brown, John.M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York, 4th Edition, 1997.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran.bme@avit.ac.in
3	Mrs. S. Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
4	Ms. Lakshmi Shree	Assistant Professor	BME	lakshmishree.bme@avit.ac.in

	BIOFUEL	Category	L	T	P	Credit
	BIOI CEE	CC	3	0	0	3
DDEAMDLE						

PREAMBLE

This course will provide an overview of existing energy utilization, production and infrastructure. We will also cover the consequences of our energy choices on the environment. The topics covered will include the chemistry of biofuels, the biology of important feedstocks, the biochemical, genetic and molecular approaches being developed to advance the next generation of biofuels and the economical and global impacts of biofuel production.

PREREQUISITE - NIL

COURSE OBJECTIVES

- Students will recognize the types and differences between existing energy resources, understand their procurement and utilization, and their impacts on society and the environment
- Students will be knowledgeable of the existing and potential future sources of renewable energy, and be able to intelligently analyze reported aspects of the energy and renewable energy fields.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. Understand the existing and emerging biomass to energy technologies	Remember
CO2. Understand the concept of 1 st generation, 2 nd generation and advance biofuels	Understand
CO3. Appraise the techno-economic analyses of biofuel conversion technologies	Understand
CO4. To articulate the concept of a biorefinery system and be able to develop major unit	Apply
operations of an integrated biorefinery	
CO5. Illustrate the environmental implications	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	L	-	M	-	S	L	-	-	ı	-	S	-	L
CO2	-	S	S	-	M	1	L	-	-	-	-	-	-	S	L
CO3	S	M	-	M	-	M	-	L	L	-	ı	-	S	-	L
CO4	-	S	M	-	M	L	L	-	-	-	-	-	-	S	M
CO5	-	1	-	-	-	-	-	S	M	-	-	-	-	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

OVERVIEW OF BIOFUELS

Generation of biofuels – Development of biological conversion technologies – Integration of biofuels into biorefineries – Energy security and supply – Environmental sustainability of biofuels – Economic sustainability of biofuels.

BIODIESEL

Biodiesel – Microorganisms and raw materials used for microbial Oil production – Treatment of the feedstocks prior to production of the Biodiesel – Current technologies of biodiesel production – Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell oil.

BIOETHANOL

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock – Environmental aspects of ethanol as a biofuel.

BIOMETHANE AND BIOHYDROGEN

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogen economy – Advantages and limitations.

OTHER BIOFUELS

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol – Production of bio-oils via catalytic pyrolysis – Life-Cycle environmental impacts of biofuels and Co-products.

TEXT BOOKS:

1. Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015 **REFERENCES:**

1. Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016 2. Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech, 2011

S.No	Name of the	Designation	Department	Mail ID
	Faculty			
1	Dr.A.Balachandar	Assistant Professor –	Biotechnology	Balachandar.biotech@avit.ac.in
		Gr-II		
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in

FOOD AND NUTRITION TECHNOLOGY Category L T P Credit CC 3 0 0 3

PREAMBLE

The course aims to enable the students to understand the physicochemical, nutritional, microbiological and sensory aspects, To familiarize the students about the processing and preservation techniques. To emphasize the importance of food safety, food quality, food plant—sanitation, food laws and regulations, food engineering and packaging in food industry.

PREREQUISITE - NIL

COURSE OBJECTIVES

- 1 Understand the tradition food processing techniques and the basics concept of food biochemistry
- 2 Demonstrate the product development technique, quality and contaminant check
- 3 To articulate their technical knowledge for industrial purpose
- 4 Describe national food laws and standards
- 5 Laws and qualities of standard for food products

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1: Recall the processing techniques practiced in olden days and the biological process	Remember
CO2. Illustrate the methods for animal product development, quality control and also screen the contaminant	Understand
CO3.Transfer the techniques in scaling up for industrial needs	Apply
CO4. Interpret and Troubleshoot instruments to maintain accuracy	Apply
CO5. Develop standards for food additives	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	M	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	L	M	S	M	L	-	-	-	-	-	-	-	M	L	-
CO4	M	S	S	M	L	-	-	-	-	-	-	-	S	S	-
CO5	-	S	S	M	M	-	-	-	-	-	-	M	L	S	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO FOOD BIOTECHNOLOGY

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

METHODS IN FOOD BIOTECHNOLOGY: Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meat species identification, Quality control, Screening products for contaminants

BIOTECHNOLOGY METHODS IN FOOD PROCESSING:

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

FOOD SAFETY & SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of food biotechnology in India.

TEXT BOOKS:

- 1. Potter, Norman. M. Food Science, 5th Ed. Springer US
- 2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4 th Ed. New Age Publishers.
- 3. B. Srilakshmi., (2002) Food Science, New Age Publishers..

REFERENCES:

- 1. Meyer, (2004). Food Chemistry. New Age
- 2. Deman JM. (1990) Principles of Food Chemistry. 2 nd Ed. Van Nostrand Reinhold, NY
- 3. Ramaswamy H and Marcott M. Food Processing Principles and Applications. CRC Press

S. No.	Name of the Faculty	Designation	Department	Mail ID			
1	Dr.A.Nırmala	Assistant Professor GII	Biotechnology	nırmalabt@avıt.ac,ın			
2	Mrs.C.Nırmala	Associate professor	Biotechnology	nırmala@vmkvec.edu.ın			

GREEN BUILDING AND SUSTAINABLE	Category	L	Т	P	Cre dit
ENVIRONMENT	EC (PS)	3	0	0	3

PREAMBLE

Before starting with this course, one must get a clear knowledge on the basics of green building, learning the plan details of HVAC for a building, energy efficient modelling.

PREREQUISITE - NIL

COURSE OBJECTIVES

- 1 To define, develop and & Plan the details of Implementation.
- 2 To summarize the fundamentals of electric power systems and building electric wiring.
- 3 To demonstrate about the Bioclimatic design and concepts.
- 4 To construct the water conservation & water management systems.
- 5 To assess the key components of remodelling project.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Define the basics of green building	Remember
CO2. Discuss the advantages and benefitsof green building practices	Understand
CO3. Illustrate low energy architecture features in residential and commercial buildings	Apply
CO4. Develop proper water conservation systems to make up a healthy building	Apply
CO5. Validate the green sustainable materials and practices	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	M	M	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	M	M	-		L	-	-	-	-	-	-	L	L	-	-
CO4	M	M	-	-	S	-	L	-	-	-	-	-	-	M	-
CO5	M	M	L	L	S	S	-	L	-	-	-	-	1	L	L

S- Strong; M-Medium; L-Low

SYLLABUS

GREEN BUILDING BASICS AND PRACTICES:

Site Design / Development & Plan Implementation, Resource Efficiency, Energy Efficiency, Water Efficiency, Indoor Environmental Quality and Homeowner Education, Operation, Maintenance & Practices. Assessment of building design and construction, emission of CO2, SO2, and NO2 of building materials, elements, and construction process.

ENERGY MANAGEMENT SYSTEM OF BUILDINGS

The objective of the course is to provide students the necessary tools to control, monitor and optimize the building's facilities, mechanical and electrical equipment for comfort, safety, and efficiency. It starts with the fundamentals of electric power systems and building electric wiring and then works through building automation systems (BAS) principles. The course allows students to acquaint applying BAS to commercial HVAC equipment, lighting systems, fire systems and security/observation systems.

LOW ENERGY ARCHITECTURE, PASSIVE BUILDING DESIGN

Solar geometry, climate/regional limitations, natural lighting, passive design and sustainability initiatives, insulating and energy storing material. Bioclimatic design and concepts. Case studies will be used extensively as a vehicle to discuss the success/failure of ideas and their physical applications.

WATER MANAGEMENT, BUILDING METHODS & MATERIALS

Water conservation, water management systems, water efficient landscaping, green roofing, rainwater harvesting, sanitary fixtures and plumbing systems, wastewater treatment and reuse, and process water strategies. AAC (Aerated Autoclave Concrete), ICF (Insulated Concrete Forms), new Advanced Framing & Insulation Techniques, SIPs (Structural Insulated Panels), Straw Bale and Pumice-crete Rammed Earth, Timber Frame, Straw Clay, and Earth ship buildings.

ENERGY EFFICIENT REMODELLING

Key components of remodelling projects-windows, walls, roofs, heating and ventilation, insulation, tighten up the building envelope, Advances in building technology and materials, incorporate active and passive solar into the home or commercial building, Mistakes to avoid, various improvements cost

TEXT BOOKS:

- 1. Kibert, C. J. "Sustainable Construction: Green Building Design and Delivery," Second Edition, New York:
 - 1. John Wiley & Sons, Inc., 2008.
 - 2. Thermal analysis and design of passive solar buildings by A. K. Athienitis and Mat Santamouris.
 - 3. Passive building desing by N.K. Bansal, G. Hauser, and G. Minke.

REFERENCES:

1. McDonough, W. and Braungart, M. "Cradle to Cradle: Remaking the Way We Make Things," New York: Farrar, Straus and Giroux, 2002

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.P.Sangeetha	Professor	Civil	sangeetha@avit.ac.in
2	Ms.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.edu.in

BIOLOGY FOR NON BIOLOGISTS	Category	L	T	P	Credit
	EC (PS)	3	0	0	3

PREAMBLE

The purpose of this course is to provide a basic understanding of biological mechanisms of living organisms from the perspective of engineers. In addition, the course is expected to encourage engineering students to think about solving biological problems with engineering tools.

PREREQUISITE - NIL

00010	2 0202011 (25)
1	To list out the students with the basic organization of organisms and subsequent building to a living being

- To summarize about the machinery of the cell functions that is ultimately responsible for various daily activities.
- To implement the knowledge about biological problems that requires engineering expertise to solve them.

COURSE OUTCOMES

COURSE OBJECTIVES

After the successful completion of the course, learner will be able to

CO1: Recall the structure and cell theory of living organism.	Remember
CO2: Discuss about the biological diversity of life.	Understand
CO3: Classify the application of enzymes in industrial level.	Apply
CO4: Detect the uses of Bioremediation and Biosensors using molecular machines.	Analyse

CO5: Appraise in detail about the principles of cell signalling in nervous system and immune system.

Evaluate

	MAPP	ING V	VITH	PKO	GKA	MME	OUI	CON	TES A	ND PE	KOGR	AMMI	SPE		OUTC	OMES
	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PSO	PSO2	PSO3
	CO1	M	-	-	-	-	1	-	-	1	-	1	L	L	L	1
	CO2	S	M	S	-	-	M	S	-	L	L	-	L	L	L	-
Ī	CO3	-	L	M	-	L	S	M	-	M	M	L	L	M	L	L
Ī	CO4	L	L	L	L	-	L	S	M	S	L	-	M	L	M	M
	CO5	S	M	L	L	-	-	-	-	1	S	L	S	S	M	L

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO BIOLOGY – CELL AND CELL STRUCTURE AND FUNCTION Introduction, Scope, Disciplines of biology –An over View of plants, animal, Microorganism.

INTRODUTION TO BIOLOGY - BIO CHEMISTRY, ENZYME, INDUSTRIAL USE

Prokaryotes – Eukaryotes, Cell, Cell structure, Organelles and their functions, Yeast, Bacteria –Friends and Foe.

FOOD DIET NUTRITION

Major constituents of food – carbohydrate, protein, lipids, vitamins and minerals. Balanced diet-BI-Junk food, Fermented food, nutritional values.

ENVIRONMENT

Clean environment-Reduce, Recycle and Reuse-Renewable energy-Waste management –water-waste water management – personal hygiene, Global Climatic Changes -Tsunami, global warming, storms, vardha, Okhi. Recycled products -Paper, No to plastic, go green.

HEALTH, IMMUNE SYSTEM AND MEDICINE

Immunology- Blood Grouping – Antigen- Antibody. Antibiotics, Vaccines their significance. Diagnosis – Parameters in Urine and Blood. Instruments – ECG, ECHO, MRI, X-ray. Prophylaxis, Chemotherapy and Allergy.

TEXT BOOKS:

- 1. J.M.Berg, J.L.Tymosczko and L.Sryer. Biochemistry, W.H Freeman publication.
- 2. Student Companion to accompany Biochemistry, Fifth Edition-Richard I. Gum port.
- 3. Frank H.Deis, Nancy Count Gerber, Roger E.Koeppe, 2 Molecular motors

REFERENCE BOOKS:

- 1. Albert's, 2003, Molecular Biology of the cell
- 2. Lodish, 2004, Molecular cell Biology

	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
1	Dr.A.Nırmala	Assistant Professor GII	Biotechnology	nırmalabt@avıt.ac,ın									
2	Dr M.Sridevi	Professor & Head	Biotechnology	sridevi@vkvec.edu.in									

			DIC	A COTO	D N /F A NT	AGEM	ENT			Catego	ory	L	T	P	Credit
			DIS	ASIE	KWIAN	AGEM	ENI			EC		3	0	0	3
reaml	ble										<u> </u>	ı			l
,andHa		sessm	entproc	edureii	nIndia.T								gainstbuilt ushazards		
rereq	uisite														
			NIL												
ourse	Outcon	ies													
1	ToUnde	erstan	dbasicc	oncepts	sinDisa	sterMa	nageme	ent							
2	ToUnde	erstan	dDefini	tionsan	dTermi	inologie	susedi	nDisast	erMana	gement					
3	ToUnd	erstan	dtheCh	allenge	sposedl	byDisas	sters								
4	Tounde	rstanc	lImpac	tsofDis	asters										
	RSEOU														
	nesucces Indonesto								atalan d	Marina		1			
	Jndersta			• •		•	_				7: .				
	ers,Atm DrivenD	•		sters,G	eologic	ai,mass	swover	nentanc	ıLandD	isasters, V	vindand	L	Understa	nd	
				ficienc	iesofex	istingbu	uildings	sforEart	hquake	disasterar	nd		Understa	nd	
	stsuitabl	-				C	υ		1						
					caution	narvmea	ısuresaı	ndrehab	ilitatio	nmeasures	sforEart	thauak	Apply		
e disas												1			
CO4.I	Deriveth	eprote	ectionm	easures	sagainst	tfloods,	cyclone	e,landsl	ides				Apply		
CO5.U	Jndersta	ndthe	effects	ofdisast	ersonbi	uiltstruc	cturesin	India					Understa	nd	
MAPI	PINGW	THP	ROGR	AMME	OUTC	OMES	ANDPI	ROGRA	AMME	SPECIFI	COUT	COMES	3		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	-	-	L	-	-	-	-	-	-	-	-	L	-	-
CO2	M	M	L	L	-	M	-	-	-	-	-	-	L	-	-
CO3	S	M	S	M	-	L	-	M	-	-	-	-	M	L	-
CO4	S	M	S	-	L	-	-	-	-	-	-	-	M	L	-

L

CO5

L

S-Strong;M-Medium;L-Low

L

L

SYLLABUS

INTRODUCTION:Conceptofdisaster;Differentapproaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etcDos and Don'ts during various types of Disasters.

RISKASSESSMENTANDVULNERABILITYANALYSIS: Responsetime, frequency and forewarning levels of different haz ards; Characteristics and damage potential of natural hazards; hazard assessment; Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards DISASTER MANAGEMENT MECHANISM: Concepts of risk management and crisis management;

Disaster management cycle; Response and Recovery; Development, Prevention, Mitigation and Preparedness; Planning for the property of the pro

relief, Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster

DISASTER RESPONSE: Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and StressManagement;RumourandPanicManagement;MinimumStandardsofRelief;ManagingRelief;Funding.

DISASTER MANAGEMENT IN INDIA: Strategies for disaster management planning; Steps for formulating a disasterriskreductionplan; Disastermanagement Actand Policy in India; Organisational structure for disastermanagement in India; Preparation of state and district disaster management plans, , Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake- holders

TEXTBOOKS:

- 1.Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423 2.
- 2.Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10:1259007367, ISBN-13: 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES:

- AbarquezI.&MurshedZ.CommunityBasedDisasterRiskManagement:FieldPractitioner'sHandbook,ADPC,Bangk ok,2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S.C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.
- 4. ManualonNaturalDisasterManagementinIndia,NCDM,NewDelhi,2001.
- 5. DisasterManagementinIndia,MinistryofHomeAffairs,GovernmentofIndia,NewDelhi,2011.
- 6. NationalPolicyonDisasterManagement,NDMA,NewDelhi,2009.
- 7. DisasterManagementAct.(2005), MinistryofHomeAffairs, GovernmentofIndia, NewDelhi, 2005.

CourseDesigners

S.No.	NameoftheFaculty	Designation	Department	MailID			
1	Ms.S.IsparaXavier	AssistantProfessor	Civil/AVIT	isparaxavier.civil@avit.ac.in			

\mathbf{T} P Credit MUNICIPALSOLIDANDWAS Category L **TEMANAGEMENT** 0 0 3 3 EC Preamble Structureisanarrangementandorganizationofinterrelatedelementsinamaterialobjectorsystem, ortheobject or systems or ganized. Material structures in clude manmadeobjectssuchasbuildingsandmachinesandnaturalobjectssuchasbiologicalorganisms, minerals and chemicals. Prerequisite Nil CourseObjectives 1. The on-site/off-site processing of the same and the disposal methods.2. The student is expected to know about the various effects and disposal options for the municipal solid was tended to the contract of the con3. Thecollectionandsupplyofwater 4. The off site processing involved in siteCourseOutcomes Onthesuccessfulcompletion of the course, students will be able to Analyze Co1.Toknowaboutthetypesofwaste&Sources Apply Co2.ToStudytheonsiteStorage&Processing Apply Co3.Tostudyaboutthecollection&transferthewaste Apply Co4.ToStudytheprocessofoffsiteprocessing Apply CO5. Toknowabout the solid wasted is posal Mapping with Programme Outcomes and Programme Specific OutcomesPO2 PO6 PO11 **PO12** PSO1 COs PO1 PO3 PO4 **PO5 PO7 PO8** PO9 **PO10** COs PO₁

 \mathbf{S}

 \mathbf{S}

 \mathbf{S}

 \mathbf{S}

 \mathbf{S}

L

CO1

CO2

CO3

CO4

CO5

S

 \mathbf{S}

 \mathbf{S}

 \mathbf{S}

 \mathbf{S}

M

 \mathbf{M}

M

M

 \mathbf{M}

S-Strong;M-Medium;L-Low

L

L

M

M

 \mathbf{M}

 \mathbf{S}

S

 \mathbf{M}

-

SOURCESANDTYPESOFMUNICIPALSOLIDWASTES

Sourcesandtypesofsolid wastes-major legislation-monitoring responsibilities-Effects of disposal of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization— public health effects. Principle of solid waste management – social &economicaspects; Publicawareness; Roleof NGOs; Legislation.

ON-SITESTORAGE&PROCESSING

On-site storage methods-material sused for containers-on-site segregation of solid was tes-public health & economic aspects of storage-options under Indian conditions-Critical Evaluation of Options.

COLLECTIONANDTRANSFER

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, Anaerobic digestion, RDF and Incineration and co-generation of energy using waste, Pyrolysis of solid Waste operation & maintenance; options under Indian conditions.

OFF-SITEPROCESSING

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - optionsunder Indian conditions- cradle to grave management concept, Prevailing laws of hazardous waste management- Risk assessment.

DISPOSAL

Dumping of solid waste; sanitary land fills-site selection, design and operation of sanitary land fills-leach at each attended to the contract of the contra

TextBooks

- 1. GeorgeTchobanoglouset.al., "IntegratedSolidWasteManagement", McGraw-HillPublishers, 2002.
- 2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994.
- 3. Charles A. Wentz; "Hazardous Waste Management", McGraw-Hill Publication, Latest publication, (1992).

ReferenceBooks

- 1. R.E.LandrethandP.A.Rebers, "MunicipalSolidWastes-problemsandSolutions", LewisPublishers, 1997.
- 2. BhideA.D.andSundaresan,B.B., "SolidWasteManagementinDevelopingCountries", INSDOC, 1993.
- 3. Handbook of Solid Waste Management by Frank Kreith, George Tchobanoglous, McGraw Hill Publication, (2002).
- Bagchi, A., Design, Construction, and Monitoring of Landfills, (2nd Ed). Wiley Interscience, ISBN:
 471- 30681- 9.
- 5. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development,
- 6. Government of India, New Delhi, (2000).

S.No.	NameoftheFaculty	Designation	Department	MailID
1	Mrs.P.Subathra	AssistantProfessor	Civil/AVIT	subathra@avit.ac.in

	ROBOTICS AND AUTOMATION	Category	L	T	P	Credit
		OE-EA	3	0	0	3
PREAMRI	F					

Robotics is the applied science of motion control for multi-axis manipulators and is a large subset of the field of "Mechatronics" (Mechanical, Electronic and Software engineering for product or systems development, particularly for motion control applications). Robotics, sensors, actuators and controller technologies are continuously improving and evolving synergistically. In the 20th century, engineers have mastered almost all forms of motion control and have proven that robots and machines can perform almost any job that is considered too heavy, too tiring, too boring or too dangerous and harmful for human beings. This course supports the students to design and develop multi-DOF manipulator and wheeled mobile robot.

PREREQUISITE -

COURSE OBJECTIVES

- To Understand the actuators used in robotic manipulators and indicate their advantages and limitations.
 - To apply the forward kinematic model of multi-degree of freedom to develop a robot arm and wheeled robot
- To apply a static force and dynamic model of two degrees of freedom to develop robot arm
- To apply a step-by-step procedure for the generation a cubic polynomial trajectory for a joint with specified kinematic constraints
- To apply and develop a program for point-to-point applications

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Describe the working of the subsystems of robotic manipulator and wheeled mobile robot	Understand
CO2. Develop the forward kinematic model of multi-degree of freedom (DOF) manipulator and inverse kinematic model of two and three degrees of freedom planar robot arm and wheeled robot	Apply
CO3. Develop the static force and dynamic model of two degrees of freedom planar robot arm	Apply
CO4. Generate a trajectory in joint space using polynomial and trigonometric functions with given kinematic constraints of multi-degree of freedom (DOF) manipulator	Apply
CO5. Develop a offline robot program for point-to-point applications such as pick and place, palletizing, sorting and inspection of work-parts	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	-	-	-	-	-	L	-	S	M	
CO2	S	L	M	-	-	-	-	-	-	-	M	-	S	M	
CO3	S	L	M	-	-	-	-	-	-	-	M	-	S	M	
CO4	S	L	M	-	-	-	-	-	-	-	M	-	S	M	

S- Strong; M-Medium; L-Low

SYLLABUS

Introduction to Robotics. Mechanical structure: Robot Configuration - Robot Anatomy, Sub-systems/ Elements of Industrial Robot - Performance characteristics of industrial Robots. Mobile robot locomotion: Introduction, key issues for locomotion, wheeled locomotion-wheel design, geometry, stability and controllability. Applications - Progressive advancement in Robots - Point to point and continuous motion applications - Mobile manipulators and its applications.

Kinematic model - Forward Kinematics for two DOF manipulator – Algebraic method, Mechanical structure and notations, Coordinate frames, Description of objects in space, Transformation of vectors, Fundamental rotation matrices (principal axes and fixed angle rotation) Description of links and joints, Denavit- Hartenberg (DH) notation, Forward Kinematics for multi-Degrees of Freedom (DOF) manipulator. Inverse kinematics of 2R, 3R manipulator - Manipulator workspace. Mobile Robot kinematics: kinematic model and constraints, Mobile robot workspace-motion control.

Static model: Differential relationship - Velocity analysis – Jacobian matrix – Determination of forces and equivalent torques for joints of two link planar robot arm. Dynamic model: Euler –Lagrangian formulation - Forward and inverse dynamic model for two DOF planar manipulator. Applications of Fuzzy Logic and Neural network in Robot Control, Neural controllers, Implementation of Fuzzy controllers

Trajectory planning: Definitions and planning tasks, Joint space techniques – Motion profiles – Cubic polynomial, Linear Segmented Parabolic Blends and cycloidal motion - Cartesian space techniques. Navigation: Graph search and potential field path planning - navigation architecture - offline and online planning.

AI And Other Research Trends In Robotics- Application of Machine learning - AI, Expert systems; Tele-robotics and Virtual Reality, Micro & Nanorobots, Unmanned vehicles, Cognitive robotics, Evolutionary robotics, Humanoids.

TEXTBOOKS

- 1. S.K.Saha, "Introduction to Robotics", Second Edition, McGraw Hill Education (India) Private Limited, 2014.
- 2. Roland Siegwart and Illah R.Nourbakhsh, "Introduction to Autonomous Mobile Robots", Prentice Hall of India (P) Ltd., 2005.

REFERENCE BOOKS

- 1. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, "Robotics: Modelling, Planning and Control", First Edition, Springer-Verlag London, 2009
- 2. K.S. Fu, R.C Gonzalez and C.S. Lee, "Robotics- Control, Sensing, Vision and Intelligence", Tata McGraw-Hill Editions, 2008.
- 3. John J.Craig, "Introduction to Robotics, Mechanics and Control", Third Edition, Pearson Education, 2005.
- 4. Mark W.Spong, M.Vidyasagar, "Robot Dynamics and Control", Wiley India, 2009.
- 5. George A. Bekey, "Autonomous Robots From Biological Inspiration to Implementation and Control", MIT Press, 2005.
- 6. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki and

- Sebastian Thrun, "Principles of Robot Motion Theory, Algorithms and Implementation", MIT Press, 2005.
- 7. Mikell P. Groover, Mitchell Weiss, Roger N.Nagel and Nicholas G. Odrey, "Industrial Robotics Technology, Programming and Applications" Tata McGraw-Hill, 2008.
- 8. Yoram Koren, "Robotics for Engineers", McGraw-Hill Book Co., 1992.
- 9. P.A. Janakiraman, "Robotics and Image Processing", Tata McGraw-Hill, 1995.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in
2.	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in

			Δ	RTIFI	CIAL.	INTEL	LIGEN	ICE.			Category	L	T	P	Credit
			73		CIAL		LIGE	CE			OE	3	0	0	3
contains and its c	labus is intellige concepts	ent age	ent, Kno	_		_					about Art this syllal	ificial Int	elligenc	e. This	syllabus
	EQUIS SE OB		NIL VFS												
				princip	oles, tec	hnique	s, and a	pplicati	ons of A	Artificia	al Intellige	ence.			
2.	To have	e knowl	edge of	generi	c proble	em-solv	ing me	thods ir	Artific	cial Inte	lligence.				
3.	3. To design software agents to solve a problem.														
4.	4. Apply the knowledge of algorithms to solve arithmetic problems.														
5.	Assemb	ole an e	fficient	code fo	r engin	eering _]	problen	ıs.							
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will b	e able t	.0						
CO1:. I	dentify 1	the diffe	erent ag	gent and	its typ	es to so	lve the	probler	ns			Understa	nd		
CO2: kı	now abo	out the p	roblem	solving	g techni	ique in	Artifici	al Intell	igence.			Apply			
CO3: C	onstruct	the no	rmal fo	rm and	represe	nt the k	nowled	ge.				Apply			
CO4: to environ		bout ex	tension	of con	dition p	robabil	ity and	how to	apply i	n the re	al time	Apply			
CO5: To	o lean al	out Inf	ormatic	on Retri	eval an	d Speed	ch Reco	gnition				Understa	nd		
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMI	ME SPI	ECIFIC (OUTCOM	IES		
COs	PO1 M	PO2	PO3	PO4	PO5 M	PO6	PO7	PO8	PO9	PO10	PO11	PO12 M	PSO1		PSO3
CO1		M	M	M		-	-	-	-	-	-		S	M	-
CO2	M	M	L	М	L	-	-	-	-	-	M	M	S	M	M
CO3	М		S	M	M	-	-	-	-	-	-	M	S	-	M
CO4	S	M	M	M	M	ı	-	ı	1	-	Г	M	S	M	M

M

S

M

M

S- Strong; M-Medium; L-Low

CO5

M

M

M

INTRODUCTION

What is AI? – AI Problems – What is an AI technique – Defining the problem as a state space search – Production system - Production system – Characteristics – Problem Characteristics?

HEURISTIC SEARCH TECHNIQUES

Generate and test – Hill Climbing – Best first Search – Problem Reduction – Constraints satisfaction – Means end analysis.

KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

REPRESENTING KNOWLEDGE USING RULES

Procedural versus – Declarative Knowledge – logic Programming – Forward versus Backward Reasoning – Matching

GAME PLAYING

The Minimax search procedure – Adding Alpha Beta cut offs – Addition Refinements – Waiting for Quiescence – Secondary Searches – Using Book moves.

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

REFERENCES

- 1.David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.
- 3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Department	Mail ID							
1.	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in							
2.	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in							

			FUN	DAME	NTALS	S OF II	NTERN	NET OI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(Category	L	Т	P C	redit	l
			1011			INGS	1221	,21 01			OE	3	0	0	3	
			for stat	istical	data ma	nipulat	tion and	d analys	sis. It v			and is mo				
PRERI	EQUIS	ITE														
	RSE OB	JECTI	VES													l
1	To lea	rn Intro	duction	to Io	7											l
2	To Stu	ıdy met	hodolog	gy of Ic	Т											l
3	To De	velop I	oT appl	ication	susing	Arduin	o and Iı	ntel Edi	tion							İ
COUR	SE OU	TCOM	IES													İ
On the	success	ful con	nnletion	of the	course,	student	s will t	e able t	n							
										ucts, con	ıtrol	TT 1-mate	1			
stateme								-		· ·		Understa	and			
CO2: T	o Unde	rstand t	he use	of Intro	duction	to IoT	funda	mentals	·			Understa	and & A	Apply	_	
CO3: L	earn to	apply I	ntroduc	tion to	IoT fo	r Com	nunicat	ing Seq	uential	Process		Understa	and & A	Apply		
CO4: A	Able to a	pprecia	ite and a	apply th	ne Intro	duction	to IoT	from a	statist	ical pers	pective	Understa	and & A	Apply		
CO5 To	o learn I	ntroduc	ction to	IoT C	halleng	es						Understa	and & A	Apply		
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAMI	ME SPE	CIFIC	OUTCO	MES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	S	M	M	L	S	S	M	S	L	S	-	S	M	S	
CO2		~	7.5		7.5	~	~		~			M	M	M	S	ł
CO ₄	M	S	M	M	M	S	S	M	S	M	M	-	M	-	S	ł
CO4	0	a	Cl Cl	n	3.4	C	a	O	- Cl	3.4	g	M	M	S	M	
CO5	ng; M-N	S	S	S	M	S	S	S	S	M	S	S	M	M	M	H
S- SHO.	ng; ivi-i	Vicuium	l; L-LU	N												
																-
																-
																ſ
																i

SYLLABUS

UNIT I -INTRODUCTION to IoT

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

.

UNIT II- IoT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network

UNIT III – Network & Communication aspects

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination

UNIT IV – Domain specific applications of IoT

Design challenges, Development challenges, Security challenges, Other challenges

UNIT V – Reflection, Low-Level Programming

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

TEXT BOOKS

- 1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"
- 2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice" **REFERENCES**
- 1. Macro Schewartz, "Internet of Things with the Arduino Yun" Packet Publishing, 2014.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in
2	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in

INTRODUCTION TO INDUSTRY 4.0	Category	L	T	P	Credit
ANDINDUSTRIAL INTERNET OF THINGS	OE-EA	3	0	0	3

PREAMBLE

Industry 4.0 and Industrial Internet of Things is the pioneer of today's modern technology. To match the engineering skills with the industry skills this subject will induce and impart the knowledge among the young professionals.

PREREQUISITE

Basic knowledge of computer and internet

COURSE OBJECTIVES

- Industry 4.0 concerns the transformation of industrial processes through the integration of modern technologies such as sensors, communication, and computational processing.
- Technologies such as Cyber Physical Systems (CPS), Internet of Things (IoT), Cloud Computing, Machine Learning, and Data Analytics are considered to be the different drivers necessary for the transformation.
- Industrial Internet of Things (IIoT) is an application of IoT in industries to modify the various existing industrial systems.
- 4 HoT links the automation system with enterprise, planning and product lifecycle.
- 5 Real case studies

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply & Analyzing the transformation of industrial process by	Analyze
various techniques.	
CO2. Evaluate the transformation technologies are considered to be the	Apply
different drivers.	
CO3. Existing industrial systems will adopt the applications of IIoT.	Apply
CO4. Intensive contributions over automation system with enterprise,	Analyze
planning and product life cycle	
CO5. Analyze of various Real time case studies.	Analyze

MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	S	M	-	M	-	-	-	-	-	-	M	S	M	-
CO2	S	S	S	M	M	-	-	-	-	-	-	M	S	M	M
CO3	S	S	S	M	M	-	-	-	-	1	-	M	S	M	M
CO4	S	S	S	M	M	_	-	-	-	-	-	M	S	M	M
CO5	S	S	S	S	M	-	-	-	-	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO INDUSTRY 4.0 ANDINDUSTRIAL INTERNET OF THINGSIntroduction: Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II. Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS

Cybersecurity in Industry 4.0, Basics of Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

IIoT COMMUNICATION

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

IIoT BIG DATA & SDN APPLICATIONS

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, Industrial IoT- Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

APPLICATIONS & REAL TIME CASE STUDIES

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

TEXT BOOKS:

1. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.

REFERENCE BOOKS:

- 1. Gilchrist, Alasdair, "Introduction to IoT", Apress, 2016
- 2. Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. L.K.Hema	Prof.&Head/ECE	ECE	hodece@avit.ac.in
2	Dr.T.Muthumanickam	Professor	ECE	hodece@vmkvec.edu.in

		1										1 1				
			GREI	EN PO	WER (GENEI	RATIO	N SYST	EMS	(Category	L	Т	C	redit	
]	EC(OE)	3	0 ()	3	
The co	PREAMBLE The course presents the various sources of renewable energy including wind, solar, and biomass as potential sources of energy and investigates the contribution they can make to the energy profile of the nation. The technology used to harness these resources will be presented. Discussions of economic, environment, politics and social policy are integral components of the course.															
PRER	EQUIS	[TE:]	NIL													
COUR	RSE OB	JECTI	VES													
1 Understand the nexus between energy, environment, and sustainable development																
2 A	2 Appreciate energy ecosystems and its impact on environment															
3 I	3 Learn basics of various types of renewable and clean energy technologies															
4 Serve as bridge to advanced courses in renewable energy																
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
CO1: Explain renewable energy sources & systems. Understand																
	Apply egen, and		·	•	s to bu	iild sol	ar, wir	nd, tidal,	geothern	nal, bio	ofuel, fu	el cell,		Apply		
	•			•				e energy.	Concept	s in so	lving nu	merical		Analyz	e	
CO4: I	Demonst	rate sel	f -learn	ing capa	ability 1	to desig	n & es	tablish re	enewable o	energy	systems.			Analyz	e	
CO5: 0		experi	iments 1	to asses	s the p	perform	nance o	of solar I	PV, solar	therma	l and bi	iodiesel		Apply		
MAPP	PING W	ITH P	ROGR	AMME	OUT	COME	S AND	PROGI	RAMME	SPEC	FIC OU	JTCON	1ES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	1	-	-	M	-	L	L	-	-	-	-	M	-	-	
CO2	S	M	S	L	M	-	L	M	-	M	-	-	-	-	-	
CO3	S	-	-	-	M	-	-	M	M	M L						
CO4	S	-	-	-	M	-	L	-	-	-	-	M	-	-	-	
CO5	S	M	S	L	M	-	L	M	-	M	M	-	M	L	-	
CO6	S	-	-	-	M	-	L	L	-	-	-	-	-	-	-	
S- Stro	S- Strong; M-Medium; L-Low															

SYLLABUS

ENERGY

Introduction to the nexus between energy, environment and sustainable development, Energy sources overview and classification, sun as the source of energy, fossil fuel reserves and resources - overview of global/ India's energy scenario. Energy consumption models – Specific Energy Consumption

ECOLOGY AND ENVIRONMENT

Concept and theories of ecosystems, - energy flow in major man-made ecosystems- agricultural, industrial and urban ecosystems - sources of pollution from energy technologies and its impact on atmosphere - air, water, soil, and environment - environmental laws on pollution control, The environmental protection act: Effluent standards and ambient air quality, innovation and sustainability, eco-restoration: Phyto-remediation.

RENEWABLE SOURCES OF ENERGY

Solar Energy: Solar radiation: measurements and prediction. Indian's solar energy potential and challenges, solar energy conversion principles and technologies: Photosynthesis, Photovoltaic conversion, and Photo thermal energy conversion. Wind Energy: Atmospheric circulations, atmospheric boundary layers, classification, factors influencing wind, wind shear, turbulence, wind energy basics and power Content, wind speed monitoring, Betz limit, wind energy conversion system: classification, characteristics, and applications. Ocean Energy: Ocean energy resources-ocean energy conversion principles and technologies: ocean thermal, ocean wave & ocean tide

BIOENERGY

Biomass as energy resources; bio-energy potential and challenges, Classification, and estimation of biomass; Source and characteristics of biofuels: Biodiesel, Bioethanol, Biogas. Types of biomass energy conversion systems - waste to energy conversion technologies

OTHER ENERGY SOURCES AND SYSTEMS

Hydropower, Nuclear fission, and fusion-Geothermal energy: Origin, types of geothermal energy sites, site selection, geothermal power plants; hydrogen energy, Magneto-hydro-dynamic (MHD) energy conversion – Radioisotope Thermoelectric Generator (RTG), Bio-solar cells, battery & super capacitor, energy transmission and conversions.

TEXTBOOKS:

- 1. Energy and the Environment, Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A., 2nd Edition, John Wiley, 2006,
- 2. Energy and the Challenge of Sustainability, World Energy assessment, UNDP, N York, 2000.

REFERENCE BOOKS:

- 1. Ocean Energy: Tide and Tidal Power by R. H. Charlier and Charles W. Finkl, Springer 2010
- 2. Introduction to Electrodynamics (3rd Edition), David J. Griffiths, Prentice Hall, 2009

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in
3	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in

		IND	USTR	TAT T	RIVI	S A N	D AII	том	A TIO	V		Categor	ry	L	T	P	C
		пл	OSIN	IAL I)K1 V 1	25 AIV	DAU	1 OIVI	ATIO	. 1		EC(OE	Ε)	3	0	0	3
Preambl	e																
To introd	luce fou	ındatio	on on t	he prin	ciples	of dri	ves &	autom	ation a	nd the	ir elem	ents with	h the i	mp	lemen	ıtatioı	n.
PRERE	QUISIT	ΓE : N	IL														
COURS	E OBJ	ECTI	VES														
1		To e	xplore	the va	rious .	AC,DO	C & Sp	ecial l	Machir	ne Driv	es for	industria	al App	lica	ation		
2		To s	tudy a	bout th	e vario	ous Op	en loc	p and	closed	loop	control	scheme	s for d	rive	es		
3		To k	now a	bout h	ardwai	re imp	lement	ation	of the o	control	lers us	ing PLC	,				
4		To s	To study the concepts of Distributed Control System														
5		To u	ınderst	and the	e impl	ementa	ation o	f SCA	DA an	d DCS	5						
COURS	E OUT	COM	ES														
On succ	essful c	omple	tion o	f the c	ourse,	the st	udent	s will	be abl	e to							
СО	1	chara	acterist	ics and	selecti	on crite	eria.			•		s, differe			Unde	erstan	ıd
СО	2		apply to		_				otors, 1	heating	effect	s and br	aking		Aj	oply	
CO	3		xplain (Unde	erstan	d
СО	4		arry ou lems in			ng usin	g PLC	and u	se of v	arious	PLCs	to Auton	nation		Unde	erstan	ıd
СО	5	comp	olex au	tomatic	on areas	S		•				se the sa			Unde	erstan	ıd
СО	To understand and use logical elements and use of Human Machine Interfacing devices to enhance control & communication aspects of Automation Understand										d						
Mapping	with P	rogran	nme ou	itcome	s and l	Progra	mme S	Specifi	c Outc	comes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1		PSO2	PS	О3
CO1	S	S	L	-		S	S	-		L	-	-	-		-		L
G02	M	-	M	-	S	L	M	-	M	L	-	-	L		-		-
CO2																	

CO4	S	-	S	-	S	M	M	L	-	L	M	-	-	-	L
CO5	S	M	S	S	S	M	S	1	M	L	L	M	-	L	M

SYLLABUS

INTRODUCTION

Working principle of synchronous, Asynchronous & stepper motors, Difference between Induction and servo motors, Torque v/s speed characteristics, Power v/s. Speed characteristics, Vector duty induction motors, Concepts of linear and frameless motors, Selection of feedback system, Duty cycle, , V/F control, Flux Vector control.

INDUSTRIAL DRIVES

Electric drive – Definition – Parts – Types -Individual – Group – Multi motor. Stepper motor – Definition – Step angle – Slewing rate -Types -Variable reluctance -Hybrid – Closed loop control of stepper motor – Drive system(any one) – logic sequencer – Optical encoder. Servo motor – Definition – Types -DC servo motor – Permanent magnet DC motors – Brushless motor – AC servo motor -Working of an AC servo motor in control system – Induction motors – Eddy current drive for speed control of induction motors.

PROGRAMMABLE LOGIC CONTROLLER

Definition Conventional Hard wired logicRelays- Features of PLC- Advantages of PLC over relay logic – Block diagram of PLC -Programming basics of PLC – Ladder logic -Symbols used in ladder logic – Logic functions – Timers – Counters – PLC networking – Steps involved in the development of Ladder logic program – Program execution and run operation by PLC – Ladder logic diagram for liquid level operation. List of various PLCs and their manufactures.

DISTRIBUTED CONTROL SYSTEM

Evolution of distributed control system -Definition of DCS – Functional elements of DCS – Elements of local control unit -Interfaces-Types of information displays – Architecture of anyone commercial DCS – Advantages of DCS -Selection of DCS – List of various DCS and their manufactures.

SUPERVISORY CONTROL & DATA ACQUISITIONS

Introduction to Supervisory control & data Acquisitions, distributed Control System (DCS): computer networks and communication in DCS. different BUS configurations used for industrial automation – GPIB, HART and OLE protocol, Industrial field bus – FIP (Factory Instrumentation Protocol), PROFIBUS (Process field bus), Bit bus. Interfacing of SCADA with controllers, Basic programming of SCADA, SCADA in PC based Controller / HMI.

TEXTBOOK

- 1. 1. G.K.Dubey, Fundamentals of Electrical Drives', Narosa Publication, 2002.
- 2. FrankD.petruzellaprogrammable logic controlsthird edition TATA mc graw-hill edition 2010.
- 3. M.S.Berde, Electric Motor Drives Khanna publishers.2008

REFERENCES

- 1. Pradheepkumarsrivastava, Programmable logic controllers with applications', BPB publications.2004.
- 2. John W.Webb, Ronald A.Reis, Programmable logic controllers-Principles and Applications', Fifth Edition, Prentice Hall of India.
- 3. Michel P.Lukas, Distributed Control system', van Nostrand Reinhold Co, 1986
- 4. R.SrinivasanSpecial electrical Machines lakshmi publication.2012
- 5. Process Control Instrumentation Technology, Johnson Curties, Prentice hall of India, 8th edition
- 6. Andrew Parr, Industrial drives, Butterworth Heineaman

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.Chitra	Professor	EEE/AVIT	chitra@avit.ac.in
2	Dr.R.Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in

MANDATORY COURSES

ENVIRONMENTAL SCIENCES	Category	L	T	P	Credit
(Common to All Branches)	BS	2	0	0	0

Preamble

Environmental science is an interdisciplinary field that integrates physical, chemical, biological, and atmospheric sciences. Environmental studies deals with the human relations to the environment and societal problems and conserving the environment for the future. Environmental engineering focuses on the various issues of environment and its management for sustainable development by improving the environmental quality in every aspect.

Prereq	uisite	:	NIL
--------	--------	---	-----

Course Objective

- To inculcate the knowledge of significance of environmental studies and conservation of the natural resources.
- 2 To acquire knowledge of ecosystem, biodiversity, it's threats and the need for conservation
- 3 To gain knowledge about environmental pollution, it's sources, effects and control measures
- To familiarize the legal provisions and the national and international concern for the protection of environment
- To be aware of the population on human health and environment, role of technology in monitoring human health and environment.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Understand the importance of environment and alternate energy resources	Understand
CO2.	Initiate the awareness and recognize the social responsibility in ecosystem and biodiversity conservation	Apply
CO3.	To develop technologies to analyze the air, water and soil pollution and solve the problems	Apply
CO4.	To evaluate the social issues and apply suitable environmental regulations for a sustainable development	Evaluate
CO5.	To identify and analyze the urban problems, population on human health and environment	Analyse

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO2	PSO 3
CO1	S	M	L	-	-	S	S	S	-	-	1	S	-	-	-
CO2	S	M	M	-	-	S	S	S	1	-	-	S	-	-	-
CO3	S	L	M	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	M	-	S	S	S	-	-	-	S	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and over-exploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems –Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, Agriculture- effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids-Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems – pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values –India as a mega-diversity nation – hot-spots of biodiversity –Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

ENVIRONMENTAL POLLUTION

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid waste- solid waste Management,—Disaster management: Floods, earthquake, cyclone, landslides and tsunamis - Clean technology options, Low Carbon Life Style.

SOCIAL ISSUES AND ENVIRONMENT

Sustainable Development- Water conservation – rain water harvesting, watershed management - Resettlement and rehabilitation of people, case studies –Climate change - Global warming - Acid rain - Ozone depletion- Environment Protection Act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act-Pollution Control Board-central and state pollution control boards.

HUMAN POPULATION AND ENVIRONMENT

Population – Population growth & Population Explosion – Family welfare programme - Environment & human health - Human rights – Value education – AIDS/HIV, Role of information technology in environment and human health.

Text Books

- 1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai
- 2. Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw-Hill, New Delhi

Reference Books

- 1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.
- 2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers.
- 3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Environmedia.
- Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennai Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd.,
 II

Edition, ISBN 81-297-0277-0,2004.

- 5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.
- 6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. K. Sanghamitra	Associate Professor	(' 	sanghamitra.chemistry@ avit.ac.in
2	A. Gilbert Sunderraj	Assistant Professor	I CHEM/VMKVEC	gilbertsunderraj@vmkvec. edu.in

Course Code	Course Title	category	L	T	P	С
	INDIAN CONSTITUTION	MC	2	0	0	0

Course Objectives:

On completion of this course, the students will be able:

- 1 To understand the nature and the Philosophy of the Constitution.
- 2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.
- 3 To Analyse Panchayat Raj institutions as a tool of decentralization.
- 4 To Understand and analyse the three wings of the state in the contemporary scenario.
- 5 To Analyse Role of Adjudicatory Process.
- 5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution –Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties – Directive Principles State Policy

UNIT II –Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

UNIT III –Government of the States

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

UNIT IV - Local Government

The New system of Panchayats , Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008

Total Hours: 30 hours

- 2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)
- 3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

Software/Learning Websites:

- 1. https://www.constitution.org/cons/india/const.html
- 2. http://www.legislative.gov.in/constitution-of-india

- 3. https://www.sci.gov.in/constitution
- 4. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of india/ Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL ID	NPTEL Course Title	Course Instructor
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW
		ADMINISTRATIVE AND ADJUDICATORY	SCHOOL OF INDIA
		PROCESS	UNIVERSITY

COURSE DESIGNER									
S.NO	NAME OF THE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID					
1	Dr.Sudheer	Principal	AV School of Law	Sudheersurya18@gmail.com					